Percolation: Theory and Applications Prof. Shlomo Havlin

Percolation — Geometrical Properties

» A percolation cluster can be characterized by fractal geometry
» We can see in the infinite cluster, at p,, holes in all scales — like Sierpinski gasket

» The cluster is self-similar (from pixel size to system size)
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Fractals

Fractal geometry describes Nature better than classical geometry.
Two types of fractals: deterministic and random.

Deterministic fractals

Ideal fractals having self-similarity.
Every small part of the picture when magnified properly, is the same as the
whole picture.

Self-similarity is a property, not a definition

To better understand fractals, we discuss several examples:

Koch curve
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Building Koch curve

n=0 A section of unit length
/ \ =1 Divide each section to 3 equal pieces and
n= replace the middle one by two pieces like a tent
_/\j/\z_/\_ n=2 The same is done for all 4 sections

m =%

This is a mathematical fractal

In physics we continue until  Nmax . We have a fractal for length scales 1/3™= < x <1
Koch curve properties:

n
(a) (gj =Length—o for n=o g contains in a finite space. No derivative.

(b) Self-similarity — scale invariance
(c) No characteristic scale
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Sierpinski gasket is perhaps the most popular fractal.

(1) divide an equilateral triangle
into 4 equal triangles
(2) take out the central one

' : s (3) repeat this for every triangle
=T ne X No translation symmetry

Scale invariance symmetry

Generation of Sierpinski gasket

" 3D Sierpinski gasket 2D Slerplnskl 935k9t
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Sierpisnki gasket with lower cut off
n=2

This is a fractal for 1< X < 3™



Percolation: Theory and Applications Prof. Shlomo Havlin

Fractal dimension

How to quantify fractals ?
Generalization of dimension to non-integer dimensions — fractal dimension
(B.B. Mandelbrot, 1977)

Definition of dimension

7 T 7

1 1 1
M(L/2)==M(L) M(L/2)==M(L) M(L/2)==M(L)

2 4 8

d=1 d=2 d=3

Take a line section of length L, divide into two, we get: M G L] %
Take a square of length L, divide L by 2 we get: M 6 ]:%M (L) :iz M (L)
Take a qube of length L, divide L by 2 we get: M G L] = ; M (L) :FM (L)

In general
M (bL) =b?M (L)
The exponent d defines the dimension of system

d
Solution: M (L) = AL" where A is a constant
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Definition of fractal dimension M (bL) =b" M (L)
generalization to non-integer dimension d,
Solution: m(v)=AL"

n"hﬁu"n(
% $
Example: Koch curve PR T P 4

d, d,
M(le:EM(L):(EJ M(L):[Ej _Loor g, 21094 1060
3 )3 3 3) 4 log3

d - non integer — between 1 and 2 dimensions. Koch curve is not a line
(d=1) but doesn’t fill a plane (d=2).

Example: Sierpinski gasket

d, d,
M(ELJJM(L):(EJ M(L):(lj L oor g, 21093 g 5g5
2 & 2 2 log 2

Non integer dimension between 1 and 2 dimensions.
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Example: Sierpinski sponge:

1 1 1\%
M(ng:%M(L):[g] M(L):(

Here the fractal dimension is between 2 and 3.

Are there fractals with d, <1 ?

Example: Cantor set

1) 1 1Y

3

df
1) _ L oor g, 21920 500

20 log3

A section of unit size.

Divide into 3 equal sections
and remove the central one.
Repeat it for every left section.
For M= we get a fractal set
of points.

df
1) _Loor g, 21092 o6
2 log3
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Percolation — Geometrical Properties

» A percolation cluster can be characterized by fractal geometry
» We can see in the infinite cluster, at p,, holes in all scales — like Sierpinski gasket

» The cluster is self-similar (from pixel size to system size)

» The square in left top is magnified in right top
= magnified in left bottom
— magnified in right bottom

» The difficulty to easily realize
the order is a sign of self-similarity




