Percolation – Geometrical Properties

- ➤ A percolation cluster can be characterized by fractal geometry
- ➤ We can see in the infinite cluster, at p_c, holes in all scales like Sierpinski gasket
- The cluster is self-similar (from pixel size to system size)

Prof. Shlomo Havlin

Fractals

Fractal geometry describes Nature better than classical geometry. Two types of fractals: deterministic and random.

Deterministic fractals

Ideal fractals having self-similarity.

Every small part of the picture when magnified properly, is the same as the whole picture.

Self-similarity is a property, not a definition

To better understand fractals, we discuss several examples:

Koch curve

Building Koch curve

$$n=0$$

A section of unit length

$$n=1$$

Divide each section to 3 equal pieces and replace the middle one by two pieces like a tent

$$n=2$$

The same is done for all 4 sections

$$n=\infty$$

This is a mathematical fractal

In physics we continue until n_{max} . We have a fractal for length scales $1/3^{n_{\text{max}}} < x < 1$ Koch curve properties:

(a)
$$\left(\frac{4}{3}\right)^n = Length \to \infty$$
 for $n = \infty$. But contains in a finite space. No derivative.

- (b) Self-similarity scale invariance
- (c) No characteristic scale

Sierpinski gasket is perhaps the most popular fractal.

Generation of Sierpinski gasket

3D Sierpinski gasket

- (1) divide an equilateral triangle into 4 equal triangles
- (2) take out the central one
- (3) repeat this for every triangle

No translation symmetry Scale invariance symmetry

Internal perimeter: $\frac{3}{2} + \frac{9}{4} + \frac{27}{8} + \dots \rightarrow \infty$

Area: $S_0, \frac{3}{4}S_0, \left(\frac{3}{4}\right)^2 S_0 \dots \to 0$

2D Sierpinski gasket

Sierpisnki gasket with lower cut off

$$n = 2$$

This is a fractal for $1 < x < 3^{n_{\text{max}}}$

Fractal dimension

How to quantify fractals?

Generalization of dimension to non-integer dimensions – fractal dimension (B.B. Mandelbrot, 1977)

Definition of dimension

$$M(L/2) = \frac{1}{2}M(L)$$
 $M(L/2) = \frac{1}{4}M(L)$ $M(L/2) = \frac{1}{8}M(L)$
 $d = 1$ $d = 2$ $d = 3$

- Take a line section of length L, divide into two, we get: $M\left(\frac{1}{2}L\right) = \frac{1}{2}M(L)$
- Take a square of length L, divide L by 2 we get: $M\left(\frac{1}{2}L\right) = \frac{1}{4}M(L) = \frac{1}{2^2}M(L)$
- Take a qube of length L, divide L by 2 we get: $M\left(\frac{1}{2}L\right) = \frac{1}{8}M(L) = \frac{1}{2^3}M(L)$

In general

$$M(bL) = b^d M(L)$$

The exponent d defines the dimension of system

Solution: $M(L) = AL^d$ where A is a constant

Definition of fractal dimension $M(bL) = b^{d_f}M(L)$ generalization to non-integer dimension d_f

Solution: $M(L) = AL^{d_f}$

Example: Koch curve

$$M\left(\frac{1}{3}L\right) = \frac{1}{4}M(L) = \left(\frac{1}{3}\right)^{d_f}M(L) \Rightarrow \left(\frac{1}{3}\right)^{d_f} = \frac{1}{4} \quad or \quad d_f = \frac{\log 4}{\log 3} \approx 1.262$$

 d_f - non integer – between 1 and 2 dimensions. Koch curve is not a line (d=1) but doesn't fill a plane (d=2).

Example: Sierpinski gasket

$$M\left(\frac{1}{2}L\right) = \frac{1}{3}M(L) = \left(\frac{1}{2}\right)^{d_f}M(L) \Rightarrow \left(\frac{1}{2}\right)^{d_f} = \frac{1}{3} \quad or \quad d_f = \frac{\log 3}{\log 2} \approx 1.585$$

Non integer dimension between 1 and 2 dimensions.

Example: Sierpinski sponge:

$$M\left(\frac{1}{3}L\right) = \frac{1}{20}M(L) = \left(\frac{1}{3}\right)^{d_f}M(L) \Rightarrow \left(\frac{1}{3}\right)^{d_f} = \frac{1}{20} \quad or \quad d_f = \frac{\log 20}{\log 3} \approx 2.727$$

Here the fractal dimension is between 2 and 3.

Are there fractals with $d_f < 1$?

Example: Cantor set

A section of unit size. Divide into 3 equal sections and remove the central one. Repeat it for every left section. For $n \to \infty$ we get a fractal set of points.

$$M\left(\frac{1}{3}L\right) = \frac{1}{2}M(L) = \left(\frac{1}{3}\right)^{d_f}M(L) \Rightarrow \left(\frac{1}{3}\right)^{d_f} = \frac{1}{2} \quad or \quad d_f = \frac{\log 2}{\log 3} \approx 0.631$$

Percolation – Geometrical Properties

- > A percolation cluster can be characterized by fractal geometry
- ➤ We can see in the infinite cluster, at p_c, holes in all scales like Sierpinski gasket
- The cluster is self-similar (from pixel size to system size)

- ➤ The square in left top is magnified in right top
 - ⇒ magnified in left bottom
 - ⇒ magnified in right bottom
- ➤ The difficulty to easily realize the order is a sign of self-similarity

