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Phase synchronization between two weakly coupled oscillators has been studied in chaotic systems
for a long time. However, it is difficult to unambiguously detect such synchronization in experi-
mental data from complex physiological systems. In this paper we review our study of phase
synchronization between heartbeat and respiration in 150 healthy subjects during sleep using an
automated procedure for screening the synchrograms. We found that this synchronization is signifi-
cantly enhanced during non-rapid-eye-movement (non-REM) sleep (deep sleep and light sleep) and
is reduced during REM sleep. In addition, we show that the respiration signal can be reconstructed
from the heartbeat recordings in many subjects. Our reconstruction procedure, which works par-
ticularly well during non-REM sleep, allows the detection of cardiorespiratory synchronization
even if only heartbeat intervals were recorded. © 2009 American Institute of Physics.

[DOL: 10.1063/1.3096415]

About one-third of our life we spend sleeping. Since sleep
is required for recreation, a disturbed sleep negatively
affects our daily physical and mental fitness. However, at
least 10% of the human population in the industrialized
world suffer from sleep related disorders or sleep-wake
dysfunctions. Investigating human physiology during
sleep is of high interest not only for identifying sleep re-
lated disorders but also for detecting and understanding
changes in sleep patterns related to other diseases such
as, e.g., Alzheimer or Parkinson disease. The standard
procedure in a hospitals’ sleep laboratory includes full
night polysomnography, where many sensors and elec-
trodes are attached to the patient’s body in order to mea-
sure heartbeat, respiration, muscle activity, brain waves,
and eye movements. Although the major aim of these
measurements is to monitor natural sleeping behavior,
sleep is often disturbed by the unfamiliar environment
and the distempering measuring devices. In contrast, the
electrocardiogram (ECG) can be recorded with portable,
rather inexpensive and comfortable Holter recorders. In
this paper we explore the possibility of extracting respi-
ration signals from ECG recordings by taking advantage
of the variation in heart rate during a respiratory cycle
(“respiratory sinus arrhythmia’’). Based on therewith ex-
tracted respiration signals, we study the phase relation-
ship between respiration and heartbeat (‘“‘cardiorespira-
tory synchronization”) utilizing an automated procedure
for screening cardiorespiratory synchrograms, and find
that cardiorespiratory synchronization differs signifi-
cantly between the main sleep stages. Reconstructed res-
piration from ECG together with the automated synchro-
gram analysis might pave the way for assessing sleep and
sleep disorders by simply analyzing Holter recordings.
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I. INTRODUCTION

Transitions in the synchronization behavior of two
coupled oscillators have been shown to be important charac-
teristics of model systems.1 It has been found that noise,
when applied identically to different nonlinear oscillators,
can induce, enhance, or destroy synchronization among
them.”™* However, phase synchronization is difficult to study
in experimental data, which are very often inherently nonsta-
tionary and thus contain only quasiperiodic oscillations.
Among the few recent experimental studies are coupled elec-
trochemical oscillators,3 laser systems,4 and climate
variables.” Moreover, the question of detecting synchroniza-
tion between several interacting processes with different time
scales in univariate signals has been addressed® and methods
for characterizing two different types of phase locking, soft-
and hard phase locking, and its detection by analyzing
univariate data were suggested.7

In physiology, the study of phase synchronization fo-
cuses on cardiorespiratory data and encephalographic data.?
First approaches for the study of cardiorespiratory synchro-
nization have been undertaken by the analysis of the relative
position of inspiration within the corresponding cardiac
cycle.9 More recently, phase synchronization between heart-
beat and breathing has been studied during wakefulness us-
ing the synchrogram method.'*"® While long synchroniza-
tion episodes were observed in athletes and heart transplant
patients (several hundreds of seconds),”’12 shorter episodes
were detected in normal subjects (typical duration less than
hundred seconds).'>™** For two recent models of cardiorespi-
ratory synchronization, see Ref. 15.

The cardiorespiratory system consisting of the heart, the
blood vessels as well as the lungs plays a major role in hu-
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man physiology. Therefore, it has been studied extensively
during the past decades. Most approaches covered monova-
riate analysis of either heartbeat or breathing signals, e.g.,
employing spectral methods to investigate heart rate
Variabilitylﬁ’ or exploring correlation behavior and fluctua-
tions by applying detrended fluctuation analysis,lg_20 or re-
cently phase rectified signal averaging.21 Cross modulations
and cross interactions between the components of the cardio-
respiratory system have been studied by means of cross-
correlation analysis, transfer function analysis, (phase) syn-
chronization analysis, and more recently by bivariate phase
rectified signal averaging (see Ref. 22 and references
therein). In this work, we review our automated synchrogram
based procedure23 using the concept of phase
synchronizationlO_B and study interactions between cardiac
and respiratory oscillations under different physiological
conditions.

Usually, the cardiorespiratory system is continuously in-
fluenced and altered by its environment, e.g., we respond to
external stimuli such as sonic or visual input and are sensi-
tive to mental stress. However, during sleep the cardiorespi-
ratory system is self-sustained, reflecting the intrinsic char-
acteristics of the autonomous nervous system and the
subjects’ physiology. In order to obtain reliable experimental
evidences of transitions in phase synchronization behavior,
we have thus considered cardiorespiratory synchronization in
humans during sleep.23 It is well known that healthy sleep
consists of approximately five cycles of roughly 1-2 h dura-
tion. Each cycle usually evolves from non-rapid-eye-
movement (non-REM) sleep, consisting of light and deep
sleep, to REM sleep.24 Homogeneous long-term data for
well-defined conditions of a complex physiological system
are thus available from sleep laboratories.” Investigating hu-
man physiology during sleep is of diagnostic value not only
for sleep related diseases such as sleep apnea. It can also
enhance the understanding and identification of nonsleep re-
lated diseases.

We have found the intriguing result that during REM
sleep cardiorespiratory synchronization is suppressed by ap-
proximately a factor of 3 compared with wakefulness.”> On
the other hand, during non-REM sleep, it is enhanced by a
factor of 2.4, again compared with wakefulness. In addition,
we have found that these significant differences between syn-
chronization in REM and non-REM sleep are very stable and
occur in the same way for males and females, independent of
age and independent of the body mass index (BMI). Our
results regarding synchronization efficiency suggest that the
synchronization is mainly due to a weak influence of the
breathing oscillator upon the heartbeat oscillator, which is
disturbed in the presence of long-term correlated noise, su-
perimposed by the activity of higher brain regions during
REM sleep.

While heartbeat data can be measured easily and conve-
niently by employing portable devices, the recording of brain
waves (electroencephalogram, EEG) and respiration is tech-
nically much more difficult. Usually, respiration is measured
by either one of the following rather uncomfortable and en-
cumbering and/or invasive and thus ambulatory ill suited
methods: (i) by using stretch sensors embedded in a belt and
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FIG. 1. (Color online) (a) Heartbeat interval time series RR; from a healthy
young subject during sleep. (b) Power spectrum of the signal shown in (a).
The LF band (0.04-0.15 Hz) is assumed to reflect blood pressure oscilla-
tions, whereas the HF band (0.15-0.4 Hz) reflects respiration via the RSA
effect. It can thus be used to reconstruct the respiratory signal.

attached to the chest and/or abdomen surveying excursions
and motions of the body surface, (ii) by means of a ther-
mistor and/or a spirometer (flow meter) incorporated in a
mouthpiece, a nose clamp or a breathing mask covering the
whole nose-mouth area, (iii) by expensive inductive plethys-
mographs or respiratory magnetometers, or (iv) by imped-
ance pneumography based on impedance cardiographic
signals.26 The major aim of polysomnographic
measurements”’ is to monitor natural sleeping behavior of
the patient. However, sleep can be disturbed significantly in a
sleep laboratory because of the unfamiliar environment and
the distempering measuring devices, both resulting in addi-
tional physical and mental stress. We thus explore in this
paper a possibility for the reconstruction of respiratory sig-
nals from heartbeat intervals since heartbeat can be recorded
at home with portable devices.

Our reconstruction algorithm is based on the physiologi-
cal phenomenon that respiration influences the sympathova-
gal autonomous nervous system. While inspiration enhances
sympathetic components followed by an increase in heart
rate, expiration suppresses sympathetic and activates vagal
components resulting in a heart rate decrease. This variation
in the heart rate during the respiratory cycle is generally
known as respiratory sinus arrhythmia (RSA). It is important
to note that RSA is not equivalent to cardiorespiratory syn-
chronization. While RSA only leads to a cyclical variation of
heart rate, cardiorespiratory synchronization is only observed
when a constant number of heartbeats occur at the same in-
stantaneous phases within the breathing cycle for a period of
several consecutive breaths. Both phenomena can occur in-
dependent of each other, although an increased RSA might
reduce cardiorespiratory synchronization.“

In spectral analysis of heartbeat interval data (see Fig.
1), two prominent peaks are often observed corresponding to
characteristic frequency components in the low frequency
(LF) (0.04-0.15 Hz) and high frequency (HF) (0.15-0.4 Hz)
bands.'® The LF band has been associated with sympathetic
activation; the corresponding peak might be related with
blood pressure oscillations (Mayer waves). The HF band is
related with vagal components, and it has been shown that
HF spectral power is significantly influenced by breathing
volume and breathing rate, i.e., changing the breathing pat-
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tern alters the HF spectral components.28 Therefore, respira-
tory components can be extracted from a heartbeat interval
time series by Fourier filtering, i.e., applying a band-pass
filter adjusted to HF components. This way, we use the RSA
effect for the reconstruction of the respiration signal from
heartbeat intervals.

The paper is structured as follows. Section II describes
our data recordings and the data preprocessing for studying
phase synchronization. This includes the reconstruction of
respiration signals from heartbeat signals. In Sec. III we de-
scribe our phase synchronization analysis for real and recon-
structed respiration as well as our automated procedure for
the detection of phase synchronization. In Sec. IV we apply
this procedure to study cardiorespiratory synchronization.

Il. DATA AND DATA PREPARATION

Our studies are based on data collected in the framework
of the EU project SIESTA from seven European sleep
laboratories.”> The data consist of full night polysomno-
graphic recording527’29 from 150 healthy subjects (age:
50.3 % 19.4 y) recorded during one regular night (an adaption
night was preceding each recording night). Note that for this
manuscript we have increased the number of subjects to 150
compared with our original publication23 where we only con-
sidered 112 subjects, and which are a subset of the 150 sub-
jects analyzed here. The average duration of the recordings is
7.9+ 0.4 h. Based on visual inspection of the recordings and
following international standards,”* sleep stages were identi-
fied and assigned in intervals of 30 s. Sleep stage classifica-
tions include REM sleep (stage 5) and non-REM sleep, i.e.,
light sleep (stages 1 and 2) and deep sleep (stages 3 and 4)
with some additional shorter wake periods.

In this paper we study a one channel electrocardiogram
(ECG) signal as well as the oronasal airflow signal measured
by a thermistor. Depending on the laboratory, the ECG signal
was sampled at 100, 200, or 256 Hz, while airflow was
sampled at 16, 20, 100, or 200 Hz. From the raw ECGs we
detected the time positions of heartbeats (R peaks) applying
either a wavelet based peak detector or a peak detector de-
signed at the German Heart Center and Klinikum Rechts der
Isar Munich, Germany.30 We have validated the comparabil-
ity of both detectors by statistical tests, considering 20 ran-
domly chosen subjects. For an extensive review on ECG beat
detection, we refer to Ref. 31. In the next step we derived the
series of time intervals between each two successive heart-
beats (RR intervals). These series usually contain some arti-
facts caused by incorrectly detected beat positions, measure-
ment errors, or subject movements. To eliminate these
artifacts, we removed beat-to-beat intervals smaller than 300
ms, larger than 2000 ms, or differing by more than 1000 ms
from the preceding or the following beat-to-beat interval.
Removed data points were linearly interpolated in order to
preserve the timing.

Regarding respiration, we studied two types of signals:
(i) respiration obtained directly from oronasal airflow and (ii)
respiration reconstructed from heartbeat intervals. Noise in
oronasal airflow data consists mainly of spikes (outliers) in
the quite sinusoidal signal. A simple threshold filter is thus
sufficient. All data points exceeding a threshold of 95% of
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FIG. 2. (Color online) Analysis of respiration signals. (a) and (b) Recorded
oronasal airflow (black solid line) is compared with the respiratory signals
reconstructed from heartbeat (red dashed lines) for two segments of a re-
cording from a healthy subject. (c) and (d) Instantaneous phases calculated
from the oronasal airflow [ ¢, (), black solid line] and from the reconstructed
respiration [¢,(7), red dashed line] are compared for the same segments.
(e) and (f) Histogram of the phase differences ¢,(z) — ¢,(t) between real and
reconstructed respiration signals. The peak in (e) indicates that the recon-
structed signal resembles the original signal with an unimportant systematic
phase shift of approximately 77/2. The uniform distribution in (f) indicates
that the respiratory signal could not be reconstructed probably due to a
diminished influence of the breathing upon the heartbeat signal, i.e., very
weak RSA.

the maximum value or dropping below 95% of the (negative)
minimum value within a moving time window are clipped to
the corresponding threshold value. After filtering, respiration
was resampled at 4 Hz, preparing the signal for phase detec-
tion via Hilbert transform. The reason for the selection of
this sampling rate lies in the optimal number of 10-20 data
points per oscillation for the Hilbert transform of noisy peri-
odic signals. The resampling is done by dividing the original
sampling rate by 4 Hz and averaging the corresponding num-
ber of data points.

To reconstruct an alternative respiration signal from
heartbeat, we began with resampling the beat-to-beat interval
series in equidistant time steps. This means we linearly in-
terpolated between the RR; values occurring at times f;
=Ef:1RR,-. We chose a time resolution of 0.25 s correspond-
ing to the 4 Hz of the original respiration signal for compa-
rability. Then, respiration is reconstructed by band-pass Fou-
rier filtering, i.e., calculating the fast Fourier transform (FFT)
of the heartbeat interval signal, setting all Fourier coeffi-
cients outside the desired HF band (0.15-0.4 Hz) to zero, and
calculating the inverse FFT. Two illustrative examples of the
reconstructed respiration and the corresponding filtered oro-
nasal airflow signals are shown in Figs. 2(a) and 2(b). In
order to investigate and quantify the reconstruction quality of
the respiratory signal, we subdivided all signals into seg-
ments corresponding to different sleep stages and employed
methods of phase-synchronization analysis (see below).

lll. ANALYSIS METHODS

In this section we review our automated synchrogram
method to study phase synchronization between a continuous
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signal (respiration) and a point-process (heartbeats), which
we briefly introduced in Ref. 23. In addition, we describe the
method we applied to investigate synchronization between
measured oronasal airflow and ECG based reconstructed res-
piration.

A. Calculating and testing instantaneous
respiratory phases

In order to study phase synchronization between two sig-
nals, it is necessary to obtain instantaneous phases at least for
the slower oscillating signal, i.e., for respiration in our case.
For a real valued continuous signal x(), this can be done
within an analytic signal approach, adding a corresponding
imaginary part ix(¢) to the signal. X(¢) is calculated by em-
ploying Hilbert transform,**

(1) = ipvfw Lt;),dt’, (1)

[ —

where PV denotes the Cauchy principal value. In practice,
for homogeneously sampled signals, the Hilbert transform
can easily be calculated by the following steps: (i) applying
FFT to the original signal x(z), (ii) multiplying the spectral
coefficients by —i sgn(f) with frequency f, and (iii) trans-
forming the manipulated signal back into time domain by
applying inverse FFT. Finally, instantaneous phases can be
defined from real and imaginary parts of the analytical sig-
nal, ¢(r)=arctan[x(¢)/x(r)]. Additionally, a sign logic has to
be implemented to obtain values —7 << ¢= 7 rather than just
—m/2<¢=m/2 (note that this is available as atan2 in
most computer libraries). Note further that a Hilbert trans-
form requires a rather narrow-banded input signal,'o’33 and
thus a suitable band-pass filter might have to be applied be-
fore the transform. Our resampling of the respiration signals
at 4 Hz represents an easy implementation of a low pass filter
eliminating HFs that would disturb the phase calculations.

Figures 2(a) and 2(b) show two exemplary parts of both,
recorded respiration and ECG based reconstructed respira-
tion. The corresponding instantaneous phase signals obtained
from Hilbert transforms are shown in Figs. 2(c) and 2(d). It
is clearly seen that the reconstruction works well in the sec-
tion shown in parts (a) and (c), while it completely fails in
the section shown in (b) and (d). In order to quantify the
quality of the reconstruction, we have plotted in Figs. 2(e)
and 2(f) the histograms of the corresponding phase differ-
ences.

If recorded and reconstructed respiration signals re-
semble each other, they exhibit 1:1 phase synchronization
and the histogram is strongly peaked. For not synchronized
signals, on the other hand, all phase differences have identi-
cal probability and the histogram is flat. This can be compu-
tationally checked either by calculating standard synchroni-
zation indices'® or by a direct study of the histograms.
However, we find that the standard indices strongly depend
on the noise level in the signal, sudden phase jumps, and
artifacts. In addition, they do not fully vanish for unsynchro-
nized surrogate data, e.g., for reconstructed respiration from
one subject and the measured oronasal airflow from another.
We thus decided to classify the histograms exemplified in
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FIG. 3. Examples illustrating the automated synchrogram method for real-
(left) and reconstructed (right) respiration signals. Symbols in (a) and (b)
show the instantaneous respiratory phases at the time of the heartbeats.
(c) and (d) means and standard deviations of the phases, calculated in time
intervals of length 7=30 s around each point in the horizontal lines. (e¢) and
(f) Phase points with a standard deviation larger than the threshold were
deleted and then sequences shorter than the threshold T were also deleted.
Note that 7 must be slightly smaller for reconstructed breathing (right) since
the continuous segments are shorter.

Figs. 2(e) and 2(f) by calculating the mean phase differences
Ap,=(p,(t)— ¢,(1)), and the corresponding standard devia-
tions within windows v with length of 30 s, i.e.,, 120 data
points. We define both signals as synchronized if the stan-
dard deviation is below 0.5 rad. In this way, we obtain for
each subject the overall percentage of synchronized windows
for the whole night as well as separately for wake, REM
sleep, and non-REM sleep (cf. Table I).

B. Automated phase-synchrogram analysis

In order to study phase synchronization between heart-
beat intervals and either the recorded oronasal airflow or the
reconstructed respiration signal, we employ the method of
phase-synchrogram analysis. This method is ideal for study-
ing phase synchronization between a point process (here,
heartbeat) and a continuous signal (here, respiration). While
cardiorespiratory synchrograms are traditionally analyzed by
visual inspection, we recently suggested a completely auto-
mated approach.23

First, instantaneous phases ¢, () and ¢,(7) are calculated
for both respiratory time series (see Sec. III A). Second, we
calculate cumulative respiratory phases ®;(r)=d;(1)+2mmn,
j=1,2, starting with n=0 and incrementing n if the instan-
taneous phase ¢,(t) drops by a value larger than 7. Ideally, a
new breathing cycle would start with a drop in phase by 2.
However, smaller values occur in practice due to limited
time resolution, noise, etc. In rare cases, when the instanta-
neous phase increases by more than 7, n is decremented.

The cardiorespiratory synchrogram is then obtained by
mapping the times tszf-‘z |RR; of the heartbeats onto the con-
tinuous cumulative phases ®(¢). Figures 3(a) and 3(b) illus-
trate two representative parts of the corresponding synchro-
grams for measured oronasal airflow (a) and reconstructed
breathing (b). In these synchrograms for studying synchroni-
zation of n heartbeats within one breathing cycle (n:1 syn-
chronization), W, (t,)=®(#,)mod 27 is plotted versus #;. In
areas with n:1 phase synchronization, n parallel horizontal
lines appear. The lines vanish if synchronization breaks
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down. Figures 3(a) and 3(b) show events of 4:1 phase syn-
chronization. The similarities between (a) and (b) indicate a
good reconstruction quality in the considered time window.
Arbitrary synchronization ratios n:m, i.e., the occurrence of
n heartbeats during m breathing cycles, can be studied easily
considering synchrograms of W,, (1) =®;(z)mod 27m ver-
sus #; and again looking for n parallel horizontal lines.

To study data of many subjects and nights, it is necessary
to automatically detect and distinguish synchronized and un-
synchronized areas in the synchrograms.23 We therefore ap-
plied a centered moving average filter of window length 7
separately for every r=1,...,n heartbeats observed within
the m considered breathing cycles in the following sense: (i)
m breathing cycles, which are assumed to be at the center of
the averaging window, are taken and the number n of heart-
beats occurring within these m breathing cycles is counted.
The times of these heartbeats are denoted as tir), (ii) a regu-
larly spaced phase interval associated with each single heart-
beat event at the center position AI,D’(:) =2mm/n is calculated,
(iii) all phases ,,(t;) belonging to neighboring breathing
cycles within the time interval ‘I,=[t£r)—7'/ 2,t£r)+ 7/2] are
averaged with respect to their dedicated phase range ‘R,
=[(r= DAY A" r=1, ... o,

W) = —— S W1y, 2)
Dﬁrtkefr

Here, Ny, denotes the number of phases occurring in the
time window ¥, and the phase range R, as obtained from the
synchrogram. Note that even when n heartbeats occur during
m breathing cycles at the center position, there might be a
different number of heartbeats during other m breathing
cycles within the same considered moving average window
of width 7. In addition to the average, we calculate for each
of the r heartbeats a standard deviation &,.

In the next step, every value \Iff;)(tk:ty)) during the cen-
tered m breathing cycles is replaced by the corresponding
mean value OI’Z (1)), as illustrated for n=4 and m=1 in
Figs. 3(c) and 3(d). In addition, the four different &, are
shown as error bars.

In the final step shown in Figs. 3(e) and 3(f) we remove
all points in the synchrogram where the condition &,
<2mm/nd is violated and keep only episodes of constant n
that are longer than a minimum period 7. From the remain-
ing synchronized episodes, we can determine the percentage
of synchronized episodes compared with the total sleep du-
ration.

C. Optimizing synchrogram evaluation parameters

For our automated analysis of phase synchrograms, three
parameters needed to be optimized:23 (1) the (time) width 7 of
the moving average filter, (ii) the standard deviation limit
parameter &, and (iii) the minimum episode duration 7. To
perform the optimization, we studied the influence of the
parameters on the overall synchronization for total nights,
comparing the results for the real data (heartbeat and orona-
sal airflow) with those for (unsynchronized) surrogate data.
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FIG. 4. (Color online) Medians, upper and lower quartiles (bars), and means
(filled symbols) for the detected synchronization rates (a) vs T for all origi-
nal data (black dotted bars and circles) and surrogate data (magenta striped
bars and triangles), left of dotted line 5=6, right of dotted line 5=5. (b) The
results for optimized parameters (for §=5 and T=30 s) are shown vs BMIs
and gender for wakefulness (blue dotted bars and circles), REM sleep (red
blank bars and triangles), and non-REM sleep (green striped bars and dia-
monds). Note the similar synchronization behavior in all subgroups. This
figure is based on our original data set of 112 subjects and is adapted from
Ref. 23.

The surrogate data were obtained by randomly combining
heartbeat data from one subject with breathing data from
another subject.

Figure 4(a) shows the total night synchronization per-
centage for different 8 and 7. As expected, the largest ratio of
synchronized episodes was found for small 7" and small &
(i.e., a large limit for the standard deviations). However, in
this case, a rather large number of synchronized episodes are
also reported for the unsynchronized surrogate data. The ra-
tio of the mean percentage of synchronization in real data
over the mean percentage in surrogate data increases from
1.6 for T=20 s to 3.4 for T=40 s. However, for 7=40 s only
very few synchronization episodes were detected. We there-
fore suggested choosing 6=5 and 7=30s to optimize the
ratio between correctly detected real synchronization epi-
sodes and falsely detected synchronization episodes in surro-
gate data. Together with 7=30 s, these parameter values pro-
vide a good separation and, furthermore, the time parameters
coincide with the time interval of 30 s used in sleep stage
classification. Note that 6 has a similar influence on the re-
sults as T (not shown in detail), while 7 just weakly effects
the results.

When comparing synchronized episodes for real and re-
constructed respiration [see Figs. 3(e) and 3(f)], one ob-
serves, in general, shorter synchronized episodes for the re-
constructed respiration. This is due to instabilities in the
reconstruction process. We thus adjusted 7,..=24 s for recon-
structed breathing, keeping both 7 and & at the same values.
This led to similar durations of the synchronized episodes in
all subjects compared with recorded respiration and 7=30 s.

IV. RESULTS AND DISCUSSION

A. Phase synchronization with recorded respiration

In this subsection we review our results obtained from
112 subjects from the SIESTA database,™ which we origi-
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nally used to study cardiorespiratory synchronization by ap-
plying our automated synchrogram analysis (see Sec. III) to
heartbeat and recorded respiratory data. In Secs. IV B and
IV C, when studying cardiorespiratory synchronization based
on reconstructed respiratory data, we have increased the
number of subjects to 150 including all 112 subjects of the
previous study.

Calculating the mean, median, and quartiles for the time
ratio of phase synchronized episodes separately for wakeful-
ness, REM sleep, and non-REM sleep, we found highly sig-
nificant differences. During non-REM sleep, we observed
phase synchronization during 3.8% of the total time com-
pared with just 0.6% during REM sleep—a difference by a
factor of 6.3. Wakefulness during the night—excluding times
before the initial sleep onset and after final awakening—was
clearly intermediate, since we found 1.6% of it to show car-
diorespiratory phase synchronization. Similar differences
were observed for other values of 7" and &.

We also studied synchronization separately for several
groups with different BMIs, and men and women. Figure
4(b) shows that the results are very similar in these subcat-
egories of subjects. The same holds for different age
groups,23 although both heart rate and breathing rate are
known to depend on BMI and age. However, when compar-
ing very young and old subjects, one observes a shift to
lower values in synchronized episodes during non-REM
sleep for older subjects. Altogether, these results prove that
our finding of significant differences between the cardiores-
piratory synchronization in REM and non-REM sleep is very
stable.

Evidence of stable but pronounced differences between
REM and non-REM sleep has been reported in the fluctua-
tions of both heartbeat'® and respiration.20 Influences of the
central nervous system (with its sleep stage regulation in
higher brain regions) on the autonomous nervous system was
suggested to be responsible for these differences. The simi-
larity led us to hypothesize that the diminished synchroniza-
tion during REM sleep is also caused by influences of the
central nervous system. We note that there is very little
(=14%) increase in the amplitude of heartbeat or breathing
fluctuations during REM sleep when compared with non-
REM sleep. The changes in the synchronization behavior can
thus not be due to variations in the strength of the influences
from the brain. Rather they must be due to the correlation
structure imposed by these influences. Long-term correla-
tions are nearly absent in both heartbeat and breathing during
non-REM sleep.

We suggested the following physiological mechanism to
explain our findings of the sleep stage differences in cardio-
respiratory phase synchronization. As long as the heartbeat
oscillator and the breathing oscillator (as parts of the autono-
mous nervous system) are only affected by uncorrelated
noise from higher brain regions, they run like two weakly
coupled oscillators, and they clearly show synchronization as
expected, possibly enhanced by the noise.” However, if the
higher brain regions are more active and impose long-term
correlated noise on the two oscillators, as is the case during
REM sleep, the noise disturbs the emergence of synchro-
nized patterns, leading to a drastic reduction in synchroniza-
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TABLE I. Average synchronization between recorded oronasal airflow and
ECG based reconstructed breathing within different sleep stages in percent.
Results are shown for all subjects and for subject characterized by different
relative fluctuations o of the reconstructed breathing. Numbers in brackets
denote the number of considered individuals in the respective group.

Whole night Wake REM Non-REM
All 30.5(150) 17.9(150) 17.8(149) 35.9(150)
=02 479 (74) 33.3 (33) 44.0 (33) 52.3 (88)
=025 39.5(110) 25.1 (95) 25.5 (95) 44.3(117)
=03 33.2(136) 20.6(129) 19.2(137) 37.4(143)

tion episodes. Hence, we suggest from the experimental data
that correlated noise rather suppresses synchronization, while
uncorrelated noise might increase it.

Our results and interpretations are in agreement with the
finding of enhanced cardiorespiratory synchronization in
heart transplanted patients, where correlated signals from the
brain can hardly affect the heartbeat oscillator. " They further
affirm the recently reported theory that synchronization pat-
tern can only indirectly be related to cardiac impairments.34
Reduced long-term correlated regulation activity could pos-
sibly explain the increase in synchronization in well-trained
athletes,"" where fluctuations of heartbeat and breathing
might be avoided to optimize the cardiovascular system for
optimal performance.

For a discussion of the phase synchronization ratios n:m
between oronasal airflow and heartbeat data, we refer to our
original paper.23 There we have shown that mainly n:1 syn-
chronization is effective in the cardiorespiratory system.

B. Quality of reconstructed respiration

Now we want to study cardiorespiratory synchroniza-
tion based solely on heartbeat data. The first step of this
task — the reconstruction of respiration from heartbeat time
series — has been described in Sec. III A. After the recon-
struction, we should make sure that the reconstructed respi-
ration is reliable as in the example shown in Figs. 2(a), 2(c),
and 2(e) rather than quite arbitrary as in the example shown
in Figs. 2(b), 2(d), and 2(f). We have thus checked for all
subjects the reliability of the respiration reconstruction, cal-
culating for each of them the overall percentage of synchro-
nized 30 s windows of real and reconstructed respiration.
The procedure described at the end of Sec. III A is performed
for the whole nights as well as separately for wake, REM
sleep, and non-REM sleep. Average values can be found in
Table 1.

Figure 5(a) shows the percentage of whole-night syn-
chronization between both respiratory signals as a function
of the relative fluctuations o of the reconstructed respiration.
Considering the time intervals between phase increases in 27
in the cumulative reconstructed respiratory phases ®,(z), o is
defined as the quotient of the standard deviation of these
breathing intervals over the mean breathing interval. Since
the respiratory data is sometimes nonstationary, we calculate
o for windows of 7,=300 s and then average these values
over the whole night.
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FIG. 5. (Color online) (a) Percentage of synchronized time between real-
and reconstructed respiration signals vs relative fluctuations o of the recon-
structed respiration for whole nights. Values of o between 0.2 and 0.3 seem
appropriate to exclude subjects with failing reconstruction of respiration. (b)
The percentage of synchronized time between real- and reconstructed respi-
ration signals is calculated separately during REM sleep and non-REM
sleep, and the pairs of values are plotted in a scatter plot. Since the points for
most subjects are above the diagonal (dashed line), the reconstruction is
more reliable during non-REM sleep.

Each point in Fig. 5(a) represents one subject from our
database. It is obvious that there are subjects where the re-
construction is rather successful (large percentage of cor-
rectly, i.e., synchronous reconstructed respiration), while for
others it more or less fails. Obviously, the value of o is
usually larger for subjects with failing reconstruction. The
relative fluctuations of the reconstructed respiration, i.e., o,
can thus be used as an approximate parameter for the quality
of the reconstruction. Consequently, we compare results re-
garding reconstructed cardiorespiratory synchronization tak-
ing into account just subjects with values of o below given
thresholds (see also Table I). We note that we tried to use
different parameters characterizing the height of the peak in
the HF band of the power spectrum [see Fig. 1(b)] as re-
placements for ¢ in classifying good and bad reconstruction
of respiration. However, o turned out to be superior to all
these parameters.

Figure 5(b) shows the percentage of synchronization be-
tween both respiratory signals during REM sleep versus the
corresponding percentage during non-REM sleep in the same
subject. Again, each point represents one subject. One clearly
observes that well reconstructed respiration is found rather
during non-REM sleep than during REM sleep since more
subjects are found above the diagonal in Fig. 5(b). This ob-
servation is stable for different thresholds for o (see Table I).
Except for 0=0.2, results for wakefulness and REM sleep
are basically the same, also reflecting the well-known statis-
tical resemblance of REM and wake stages.

C. Phase synchronization with reconstructed
respiration

Figure 6(a) shows the whole-night percentages of car-
diorespiratory synchronization for the real respiration (left
subpanel) and the reconstructed respiration (right subpanel)
considering subsets of the 150 subjects with o below and
above the indicated thresholds and slightly reduced 7.
=24 s. We have employed the automated synchrogram analy-
sis algorithm described in Sect. III to calculate these percent-
ages of phase synchronization. The close similarity of the
results for real and reconstructed respiration prove that car-
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FIG. 6. (Color online) (a) Median, upper and lower quartiles, and mean
(dot) of percentage of phase synchronized time regarding heartbeat and real
breathing signal (left). The three sets on the right show the results for heart-
beat and reconstructed respiration for different o. The violet striped bars
represent the values for subjects with o below the threshold value and the
dark yellow blank bars for breathing signals with o above the threshold. (b)
Cardiorespiratory synchronization percentages for real respiration signals
(left set) and reconstructed respiration signals (right set) during different
sleep stages (wake=blue, REM=red, non-REM=green).

diorespiratory synchronization can be calculated based solely
on heartbeat data. Comparing the values with those in the
left subpanel, we think that the limit 0<<0.25 is most
appropriate.

For Fig. 6(b) we have split the data into parts of wake-
fulness, non-REM sleep, and REM sleep. Again there is a
close similarity for the results based on real respiration and
reconstructed respiration. The main finding of drastically re-
duced cardiorespiratory synchronization during REM sleep
and enhanced cardiorespiratory synchronization during non-
REM sleep compared with wakefulness is fully confirmed.

V. CONCLUSION

We studied cardiorespiratory phase synchronization for a
large database of healthy subjects, further increasing the
number of subjects considered in our original paper.23 For
this purpose, we developed and thoroughly described an al-
gorithm detecting epochs of synchronization automatically
and systematically in synchrogram plots. Comparing the syn-
chronization behavior during different well-defined physi-
ological stages, we observed clearly reduced synchronization
during REM sleep and enhanced synchronization during
non-REM sleep compared with wakefulness. Since REM and
non-REM sleep differ mainly in the type of activity of higher
brain centers, it seems probable that the differences in car-
diorespiratory synchronization are caused by the more and
less long-term correlated regulation actions of the brain dur-
ing REM and non-REM sleep, respectively.

In addition, we developed and tested a method for the
reconstruction of respiration signals from interheartbeat time
series based on the RSA effect and the HF spectral compo-
nent of heartbeat. We have shown that the reliability of the
reconstruction can be checked for each subject by calculating
the relative standard deviation of the reconstructed breathing
intervals. In general, the reconstruction is more reliable dur-
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ing non-REM sleep compared with REM sleep. The respira-
tion reconstruction works well in most subjects and yields
very similar results for the cardiorespiratory phase synchro-
nization as the recorded respiration data. Hence, a simple
Holter recording will be sufficient for the study of cardiores-
piratory synchronization in many subjects. The findings
should be helpful in the discrimination of sleep stages based
only on Holter recordings.

Alternatively, the reconstruction of respiration might be
based on the heights of the R peaks in multiple lead ECG
recordings if such records are available. Possibly, a different
reconstruction method can improve the reconstruction qual-
ity particularly during REM sleep. Such a method might be
combined with the approach studied in this paper. This pos-
sibility should be explored in future work. In addition, the
consistency of the reconstruction with respiration recorded
with stretch sensors could be checked.
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