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Modularity is a fundamental feature of real networks, being intimately bounded to their functionality, i.e., to
their capability of performing parallel tasks in a coordinated way. Although the modular structure of real graphs
has been intensively studied, very little is known on the interactions between functional modules of a graph.
Here, we present a general method based on synchronization of networking oscillators, that is able to detect
overlapping structures in multimodular environments. We furthermore report the full analytical and theoretical
description on the relationship between the overlapping dynamics and the underlying network topology. The
method is illustrated by means of a series of applications.
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I. INTRODUCTION

Many real systems can be represented by networks made
of a large set of interacting elements �1�. The connectivity
structure of those graphs often features an organization in
modules �clusters, communities�, indicating the existence of
specialized groups of nodes that are performing a specific
role �social, biological, or technological�. That is the reason
why much effort has been devoted, so far, to create proper
tools, able to unveil the network modularity in a large variety
of fields �2,3�. However, most of the existing methods pro-
vide a full partition of the graph, i.e., they do not consider
the possibility of one node belonging to more than one clus-
ter. As a result, these approaches are not suitable to capture
the information on how the set of communities interacts.

On the other hand, recent studies have highlighted the
crucial importance of modular overlapping, as a possible
mechanism through which networking systems are able to
perform parallel tasks in a coordinated way �4�. For instance,
in a metabolic network, a given metabolite can be involved
in more than one function, or, in social networks, a person
can belong to several clubs or groups. Actually, only few
studies have addressed the issue of finding overlapping struc-
tures in complex graphs, with the aim of overcoming the
above limitation, and allowing nodes to simultaneously be-
long to two or more communities, so as to act as interaction
bridges between them.

The first approach was based on clique percolation �4�,
where a community was defined as the set of nodes that can
be visited by rolling a k clique over the network through
other cliques with k−1 common nodes. Some other methods
�5–7� have further tried to describe a graph as a hierarchical
set of modules, searching, at the same time, for overlapping
structures between them. For instance, Lancichinetti et al.
have proposed an algorithm to detect overlapping and hier-
archical structures by means of a fitness function �8�, while
Ref. �9� concentrated in the evaluation of the percentage each
node is belonging to the different modules, thus, introducing
the concept of fuzzy modularity.

Together with these methods, having in common the fact
of being purely topological �i.e., being the identification of
overlapping independent on functional or dynamical infor-
mation�, other recent approaches have instead considered the
dynamical evolution of the graph as a method to reveal and
measure its modular partition �10�, the overlapping structure
among modules �11�, as well as their hierarchical organiza-
tion �12�. In particular, Ref. �13� introduced a strategy to
unveil overlapping nodes and their dynamics, with the main
focus on the case of two-modules networks.

In this paper, we extend the analysis to the general situa-
tion of a multimodular structure by giving a full analytical
description of the overlapping behavior, as well as of its
relationship with the network topology. Finally, we illustrate
the main results with reference to some networks constructed
from the observation of real-world interacting systems.

II. METHOD OF DYNAMICAL OVERLAPPING

We start by considering a graph G of N coupled Kuramoto
oscillators �14� grouped in two moduli. The evolution of the
network dynamics, given by the phases �i of the oscillators,
is described by:

�̇i = �i +
d

ki
�
j=1

N

aij sin�� j − �i� , �1�

where dots denote temporal derivatives, ki is the degree of
the ith oscillator, d is the coupling strength, and aij are the
elements of the adjacency matrix of G �i.e., they are either 1
or 0 depending on whether or not a link exists from node j
incident to node i�. The frequencies of the oscillators are
assigned accordingly to their membership to one or the other
module. Precisely, let A and B be the two moduli in which
the graph G is dissected, then �i=�1 if i�A and �i=�2 if
i�B, this way establishing two clusters of frequencies. No-
tice that the above formalism includes all kinds of non
weighted �directed or undirected� networks.

With some links connecting the two moduli, the onset of a
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synchronization interface SAB can occur, that is composed of
nodes displaying an instantaneous frequency oscillating in
time around the mean value of the frequencies in the two
clusters. To identify those nodes belonging to SAB, the over-
lapping index can be defined as:

Ci ª sgn�min
t

��̇i�t� − �̄��min
t

���̇i�t� − �̄�� , �2�

being �̄ the mean of the two frequencies assigned to the two
moduli, which allows to monitor how close in time the dy-
namics of a node gets to �̄. The smaller the overlapping
index is, the more the corresponding node belongs to the
interface, therefore a threshold � can be fixed, and the con-
dition �Ci��� can be taken to assign the ith node to SAB �13�.

However, in practical cases, modular networks are usually
made of more than 2 communities. For instance, the protein-
protein interaction network is seen as to be equipped with
many functions such as transcription, translation and energy
production, where each function corresponds to one commu-
nity. Therefore, an extension of the above analysis is re-
quired for G to be partitioned into n moduli M1 ,M2 , . . . ,Mn.

The strategy for identifying all the possible functional in-
terfaces consists in integrating the system defined by Eq. �1�
n times. Precisely, in each simulation, one of the n moduli is
considered as the cluster of frequency �1 and the rest of the
graph as the second cluster of frequency �2. This way, the
nodes for which �Ci��� are assigned to the Sp synchroniza-
tion interface between module Mp and the rest of the net-
work.

Finally, a node i is assigned to the overlapping interface
Spq between the modules Mp and Mq if, being a node from
either Mp or Mq, it belongs simultaneously to Sp and Sq; that
is, a overlapping interface is defined by

Spq ª �i � �Mp � Mq� � �Sp � Sq�� . �3�

III. ANALYSIS OF REAL-WORLD NETWORKS

In order to illustrate the kind of information that can be
unveiled by the analysis of the dynamics of overlapping in-
terfaces, we here apply the method to three multimodular
real networks. The first is the network of 105 books on U.S.
politics purchased at the online bookseller amazon.com. In
such a representation, the links hold for frequent co-
purchasing of books by the same buyer. Data has been com-
piled from 2003 to October 2008, and the modularity analy-
sis of the network �15� has revealed a clear partition of the
graph into 3 different communities, which can be related to
books with similar ideological orientations.

In our case, we focus the attention on the meaning of the
overlapping structure features. To that purpose, we simulate
three times Eq. �1�, where in each simulation oscillators be-
longing to modulus Mp �p=1,2 ,3� have frequency �2 and
oscillators belonging to the other two moduli are set at fre-
quency �1.

The results are reported in Fig. 1, in which the values of
Ci for each book, as given by Eq. �2�, can be seen for the
three simulation trials. The Figure allows to identify directly,
for each trial p, all nodes belonging to the synchronization
interfaces Sp as those for which the corresponding values of
Ci fall within the gray strip. The nodes that, furthermore,
fulfill the overlapping condition given by Eq. �3� are de-
picted in full color and encircled with the shape and color
corresponding to the community they overlap with.

Interestingly, our algorithm also identifies two nodes �48
and 76� whose dynamical behavior does not fit in with the
community in which they were both initially allocated. Ac-
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FIG. 1. �Color online� Political books network. �a� The overlapping index Ci of each book in the network. In this figure we individuate,
for the three possible simulations, the synchronization interfaces Sp between the three identified communities: M1 �in blue diamonds�
representing left oriented books, M2 �in magenta circles� neither right nor left oriented books, and M3 �in red squares� right oriented books.
Books belonging to the corresponding synchronization interface ��Ci���=0.05� fall within the gray strip. Nodes simultaneously belonging
to two or more synchronization interfaces �i.e., the overlapping nodes� are depicted in full color and encircled with the shape and color of
the community they are overlapping with. Nodes 48 and 76, whose dynamical behavior corresponds to a community different from the
initially assigned one, are encircled in black. Parameters used in Eq. �1� are: N=105, �1=0.2, �2=0.8, and d=0.8. �b� Graph showing the
political books network and its three communities. Nodes 48 and 76, initially assigned to community M2, behave as belonging to M1 and M3,
respectively.
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tually, each of these two nodes behaves, in all trials, as be-
longing to a different community �M1 and M3, respectively�,
indicating a misclassification in the original network parti-
tion.

The second network is an ecological one that was con-
structed from observations of a community of 62 bottlenose
dolphins �Tursiops spp.� over a period of 7 years from 1994
to 2001 in New Zealand �16�. Nodes in the network represent
dolphins, and ties between nodes represent associations be-
tween dolphin pairs occurring more often than expected by
chance �see Fig. 2�.

The network was dissected in Ref. �17� into four commu-
nities �two principal ones and three minor subdivisions� us-
ing a previously proposed clustering algorithm based on the
calculation of betweenness scores �3�. The application of our
algorithm to this case is reported in Fig. 2, and highlights the

existence of one dolphin, SN89, who actually is responsible
of the cohesion between the two main communities �blue
circles and the rest�. It is worth mentioning that other works
�8� analyzing the overlapping structure of this biological net-
work also identified this dolphin as the crucial one for the
graph connectivity structure. In addition, as long as the cou-
pling strength d is increased in Eq. �1� from d=0.9 to d
=1.0, our method is also able to detect other “important”
dolphins. Namely, Bumper, and Beak are in one overlapping
interface, and Patchback, Topless, and Haecksel in another.

Finally, as an example of a technological network, we
report the application of the method to the airport transpor-
tation network in the USA, as in 1997 �18�. In this case, each
node corresponds to an airport in the USA, while two nodes
are linked if there is a flight connection between them.

The resulting graph is formed by 332 airports and 2126
flight connections. The application of the fast algorithm de-
veloped by Newman in �19� provides an optimal partition
consisting in a structure of five communities as depicted in
Fig. 3: the first community M1 �blue diamonds� comprising
the airports of the west and central part, and the second larg-
est community M2 �red squares� grouping the airports from
the eastern part. The third M3 �black stars� and fourth M4
�green triangles� communities include the airports from
southern-east states �Louisiana, Mississippi, Alabama and
Florida� and Montana. Finally, airports in Alaska are grouped
in the last community M5 �not shown�.

The resulting overlapping structure �see Fig. 3� shows that
the largest overlapping interface individuates the border be-
tween the main communities M1 and M2, while the rest is
made of the overlap between M2 and M3. Notice that, since
the overlapping index is a dynamical measure that depends
on the coupling strength, the number of overlapping nodes
increases with d. In this case, the first nodes to enter the
overlapping structure are located in the southern-east states,
and correspond to the overlap between M3 and M2 �Dannelly
Field �272� and Pensacola Regional �286��, along with Kan-
sas City �172�, corresponding to the overlap between M1 and
M2. These results are in qualitative agreement with those
extracted from Ref. �20�, even though the initial community
assignment does not coincide exactly, due to the use of dif-
ferent community detection algorithms.

Haecksel
Topless

Bumper

Beak

SN89

Patchback

FIG. 2. �Color online� Lusseau’s bottlenose dolphins network.
Graph representation of the four communities given in �17�: there is
one big community with 20 individuals �in blue circles�, while all
other vertices are part of a second big community which is further
divided into three subcommunities �with 12, 7, and 23 dolphins�
�17�. The identified overlapping individuals with �Ci���=0.05 are
full colored and encircled with the symbol corresponding to the
community they overlap with. The smallest value of Ci corresponds
to a female dolphin named SN89 �green full diamond�, which over-
laps between the two big communities when d=0.9. The other five
“important” dolphins appear when d=1.0. Parameters used in Eq.
�1� are N=62, �1=0.2, �2=0.8.
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FIG. 3. �Color online� American airlines transportation network. Geographical locations of the 5 communities of airports identified in
Ref. �19�: M1 �in blue diamonds� represents the airports located in the western/central states and overseas islands, M2 �in red squares� the
airports located in the eastern states, M3 �in black stars� those in Louisiana, Mississippi, Alabama, and Florida, M4 �in green triangles� those
located in Montana and finally M5, not shown in the map, corresponds to airports in Alaska. Those airports whose dynamical overlapping
�Ci���=0.05 are depicted in full color and encircled with the symbol corresponding to the community they overlap with. Parameters used
in Eq. �1� are N=332, �1=0.2, �2=0.8, and d=0.8.
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IV. ANALYTICAL RESULTS

Let us now move to describe analytically the overlapping
structures found in the previous Section. From the viewpoint
of their dynamics, overlapping nodes are characterized by a
frustrated behavior due to the competition between different
oscillatory clusters in the network. Then, in order to give an
analytical basis to our findings, we start again from the
simple case in which there are only three interacting phase
oscillators �13�. Two of them represent those nodes clearly
assigned to either clusters, so we can consider that their dy-
namics are given just by the frequencies fixed in each com-
munity: �̇1=�1 and �̇2=�2. The third oscillator, which mod-
els the set of overlapping nodes, evolves accordingly to both
its intrinsic dynamics ��3� and the inputs received from the
others:

�̇3 = �3 +
d

2
�sin��2 − �3� + sin��1 − �3�� . �4�

Whereas the solutions for oscillators 1 and 2 are simply
�1=�1

0+�1t and �2=�2
0+�2t, with �1

0 and �2
0 initial phases,

the solution of Eq. �4� is �3=�1−�, if oscillator 3 is initially
assigned to cluster 1, or �3=�2+� otherwise.

In both cases, � is a function whose asymptotic behavior
can be approximated up to first order in d /� �see Appendix
A� by

� 	
d

2�
cos��t + �� , �5�

being �ª�2−�1 and �ª�2
0−�1

0.
Despite being a first order approximation in d

� , an inspec-
tion of the instantaneous frequencies in Fig. 4, extracted
from the American airlines transportation network, shows
that there is a good agreement with the harmonic behavior
we have theoretically derived. Then, we can consider that
Eq. �5� can be also used to describe the asymptotic behavior
of a phase oscillator in a directed or undirected complex
network without weights. Namely, we can approximate the
ith oscillator phase by

�i = siai
d

�
cos��t + �i� + bi + �it , �6�

in which si=−1 and �i=�1 when node i is initially assigned
to community 1 �si=+1 and �i=�2 otherwise�, and �i, ai,
and bi suitable constants. It is important to remark that, ide-
ally, nodes in the overlapping community are characterized
in the former description by ai=0.5, and the rest by ai=0.
Thus, ai measures the degree of membership of node i to the
overlapping community.

If Eq. �6� is introduced in Eq. �1�, we find �see Appendix
B� that it is an approximate solution when �i=0 and ai
= �ki

out�	 /ki. ki is the in-degree of node i. ki
out is the number of

links incident to node i from nodes not belonging to the
community of node i. On its turn, 	 is an exponent in the
interval �0.5,1� that measures how coherent is the asymptotic
behavior of the oscillator phases, and depends on the distri-
bution of the set of bi’s in such a way that it is close to 1
when this phase distribution is homogeneous, and close to
0.5 when it is heterogeneous.

Notice that Eq. �6� rules the ith phase oscillator after a
transient time, thus the coefficients bi are not determined by
the initial conditions and, consequently, their distribution is
unknown in principle.

Therefore, one obtains that the ith instantaneous frequency
is

�̇i 	 �i − siAi sin��t� ,

with

Ai ª d
�ki

out�	

ki
. �7�

In Fig. 5 we check the validity of this result with the
experimentally estimated amplitudes Aexp of the instanta-
neous frequencies obtained for a specific simulation trial of
the American airlines transportation network. The choice of
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FIG. 4. �Color online� Temporal behavior of the instantaneous
frequencies of six nodes in the American airlines transportation net-
work. Same parameters as in the simulations reported in Fig. 3,
where dashed lines are �1 and �2. It can be seen how they all
qualitatively follow an harmonic oscillation, in agreement with the
phases predicted by Eq. �5�. The same qualitative behavior is ob-
served for all the other nodes considered in the present Manuscript.
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FIG. 5. �Color online� Dependence of Aexp with kout in the
American airlines transportation network. To check Eq. �7�, we plot
Aexpk vs kout in a log-log scale, being Aexp the estimated amplitudes
of the instantaneous frequencies in one of the simulation trials. We
find that the best fit �blue solid line� is a straight line with slope
0.95, which is between the limiting cases obtained theoretically
�black dash lines�, corresponding to slopes 0.5 and 1.
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this particular network is because, due to its high connectiv-
ity, the interface between communities is large enough to
provide satisfactory statistics.

In that Figure, one can clearly see that the experimental
data fit very well Eq. �7� with 	=0.95 �blue solid line�,
which is in between 0.5 and 1 �black dashed lines�, as theo-
retically deduced.

As all trials are considered in Eq. �3�, we find that the
overlapping nodes �red asterisks in Fig. 6� are mainly con-
centrated above an horizontal dashed line, corresponding to
Aexp=0.295. Once this relationship between the overlapping
nodes and Aexp is established, we further check that the over-
lapping nodes are those for which Ai
0.295 �on the right of
the vertical dashed line�. This, on its turn, represents the
demonstration that a connection exists between the dynami-
cal evolution of the overlapping nodes and their topological
�connectivity� features.

Finally, it is worth noticing that, in practice and due to the
exponent 	 being usually close to 1, the quantity ki

out /ki can
be used to properly identify the overlapping nodes in a
graph.

In conclusion, we have shown that networks with multi-
modular structures feature a complex set of interfaces, that
have the role of coordinating, by means of the overlapping
nodes, the dynamical behavior enforced in each one of the
graph modules. The generic method here introduced is able
to identify the entire structure of overlapping by a careful
monitoring of the synchronization process. With further the-
oretical exploration, it is found that the participation of each
node to such an overlapping structure depends on the ratio
between the number of links incident to it and coming from
different communities, and its degree. We expect, therefore,
that the presented findings will be able to shed some light on
the understanding and design of generic modular networks.
Actually, similar analysis has been carried out in other real
world graphs, including protein-protein interaction networks,
whose results will be presented elsewhere.
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APPENDIX A: PROOF OF EQ. (5)

Let us consider three interacting phase oscillators with
equations �̇1=�1, �̇2=�2, and

�̇3 = �3 +
d

2
�sin��2 − �3� + sin��1 − �3�� , �A1�

such a latter equation describing the overlapping community.
Since the solutions for oscillators 1 and 2 are �1=�1

0+�1t

and �2=�2
0+�2t, with �1

0 and �2
0 initial conditions, Eq. �A1�

can be written as

�̇3 = �2 + d sin
�1 + �2

2
− �3�cos
�2 − �1

2
� ,

where we have assumed that oscillator 3 was initially as-
signed to cluster 2. Its solution is �3=�2

0+�2t+�, where �
verifies the following ordinary differential equation:

�̇ = − d sin
� +
�t + �

2
�cos
�t + �

2
� , �A2�

being �ª�2−�1 and �ª�2
0−�1

0. Notice that if the oscil-
lator 3 is initially assigned to cluster 1, Eq. �A2� remains
valid but now the solution is �3=�1

0+�1t−�.
Therefore, the combined inputs from oscillators 1 and 2

make oscillator 3 depart from its intrinsic dynamics in a
quantity � that depends on the ratio d /�. Then, at first order
in �, Eq. �A2� takes the form

�̇ 	 − d�sin
�t + �

2
� + � cos
�t + �

2
�
cos
�t + �

2
� ,

whose formal solution is

� = ce−f�t� −
d

2
e−f�t�� ef�t� sin��t + ��dt ,

with c an integration constant and

f�t� ª
d

2�
��t + � + sin��t + ��� .

But since f�t�	 1
2dt asymptotically, � is then approxi-

mated by

� 	 −
d

2
e−�1/2�dt� e�1/2�dt sin��t + ��dt ,

which, after integration and some algebraic manipulations,
takes the form
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FIG. 6. �Color online� Comparison between the theoretical and
the numerical amplitudes in the American airlines transportation
network. The overlapping nodes �red asterisks�, characterized by
having at least two small overlapping indexes, are essentially those
with Aexp�0.3. But, in addition, they can be rather well described
as the nodes with Ai�0.3, showing that Eq. �7� determines much of
the dynamical behavior exhibited by the nodes in the graph.
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� =
cos��t + � + ��

�1 + 
2�

d
�2

	
d

2�
cos��t + �� ,

with �ªarctan� d
2� �.

APPENDIX B: PROOF OF EQ. (7)

If we consider that the approximate ith oscillator phase is
given by

�i = siai
d

�
cos��t + �i� + bi + �it , �B1�

and, if one further introduces the above expression into the
Kuramoto model, whose equations are

�̇i = �i +
d

ki
�
j=1

N

aij sin�� j − �i� , �B2�

one obtains that the left-hand side can be written as follows:

�̇i = �i − siaid sin��t + �i� .

The right-hand side of Eq. �B2� has a sum over the neigh-
bors of node i that can be always expressed as

�
j=1

N

aij sin�� j − �i� = �
j�Ci

sin�� j − �i� + �
j�Ci

sin�� j − �i� ,

where Ci is the set of the indices associated to those neigh-
bors of node i that belong also to its community.

But, since � j =�i for all j�Ci,

�
j�Ci

sin�� j − �i� 	 Pi with Pi ª �
j�Ci

sin�bj − bi� ,

and since � j −�i=−si� for all j�Ci,

�
j�Ci

sin�� j − �i� 	 �
j�Ci

sin�− si�t + bj − bi�

= sin�− si�t�Qi + cos�− si�t�Ri,

with

Qi ª �
j�Ci

cos�bj − bi� and Ri ª �
j�Ci

sin�bj − bi� .

Consequently, up to first order in d
� , Eq. �B2� can be

approximated by

− siaid sin��t + �i� 	
d

ki
Pi − si

d

ki

i sin��t + �i� , �B3�

being


i ª
�Qi

2 + Ri
2 and �i ª − si arctan
 Ri

Qi
� .

Although the specific values of Pi, Qi, and Ri depend on
the values bi, it is possible to compute them for two particu-
lar cases. At this point, it is important to remark that, al-
though mathematically suggested by Eq. �B1�, the bi’s are
not fixed by the initial conditions of the system. They appear
in an approximate solution after a transient time, thus the
distribution of bi’s is, in general, uncorrelated with the initial
distribution of phases, and it is unknown.

The first case in which computation can be performed
analytically, is when the distribution of bi’s is a delta �i.e.,
bi=b for all node i�. For this distribution, Pi=Ri=0 and Qi
=ki

out, where ki
out is the number of links that node i has with

nodes out of its own community. Then, since 
i=ki
out and

�i=0, Eq. �B3� is only verified if

ai =
ki

out

ki
and �i = 0. �B4�

The second case corresponds, instead, to the opposite situ-
ation, i.e., when the distribution of bi’s is flattened until hav-
ing a uniform distribution �i.e., bi�U�0,2�� for all node i�.
First, we have to notice that, defining � jªbj −bi,


i
2 = �

j

�sin2 � j + cos2 � j� + �
k�j

�sin � j sin �k + cos � j cos �k�

= ki
out + 2�

k
j

cos��k − � j� .

But since �k−� j =bk−bj follows a uniform distribution
U�0,2�� because it is the difference of two random phases
taken from a uniform distribution, cos��k−� j� has a symmet-
ric distribution in �−1,1� and, consequently, its mean is zero.
Therefore, we obtain that 
i=�ki

out on average.
Furthermore, given that

tan�arctan
 Ri

Qi
� + �
 =

Ri

Qi
+ tan �

Ri

Qi
tan � − 1

=
Ri cos � + Qi sin �

Ri sin � − Qi cos �
,

the following equality holds for any value of �,

arctan� �
j

sin � j

�
j

cos � j� + � = arctan� �
j

sin�� j + ��

�
j

cos�� j + ��� .

But since � j +� follows a uniform distribution U�0,2��,
that equality is only possible if arctan�Ri /Qi� has a distribu-
tion in �−� ,�� that is invariant under any � shift, which
implies that it is a uniform distribution with a vanishing
mean value. Then, we have that �i=0 on average.

On the other hand, for the same reason for which cos�bk
−bj� has a zero mean, also Pi has a zero mean and, therefore,
Eq. �B3� is verified on average if
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ai =
�ki

out

ki
and �i = 0. �B5�

Taking into account Eqs. �B4� and �B5�, the approximate
solution for the ith instantaneous frequency is �̇i	�i
−siAi sin��t�, with

Ai ª d
�ki

out�	

ki
,

being 	� �0.5,1� an exponent that depends on the distribu-
tion of bi’s �close to 1 when it is homogeneous and close to
0.5 when it is heterogeneous�.
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