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The response of a random and modular network to the simultaneous presence of two frequencies
is considered. The competition for controlling the dynamics of the network results in different
behaviors, such as frequency changes or permanent synchronization frustration, which can be
directly related to the network structure. From these observations, we propose a new method
for detecting overlapping communities in structured networks.
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1. Introduction

In natural complex systems the importance of how
the collectivity of dynamical components responds
and processes the external information is well
known. Often, several different stimuli influence
simultaneously the system and compete for the con-
trol of the dynamics, such as simultaneous sensorial
signals acting on the neural system, or social groups
exposed to several political, fashion or advertise-
ment tendencies. In these processes, the dynami-
cal units and their relationship with the underlying
topolgy will be crucial in the final result. This kind
of competitive dynamics has been studied in regu-
lar ensembles of oscillators [Leyva et al., 2003], and

recently the authors have considered the case for
complex networks [Li et al., 2008].

In order to explore more deeply this phe-
nomenon, in this work, we study the competi-
tive dynamics in a complex unstructured network
(Sec. 2) and a modular one (Sec. 3) with two
domains of synchronization. The behavior of each
node is contrasted with its topological state. From
the results, it can be inferred how the topology helps
or prevents the ensemble to process incoming infor-
mation. Finally, we propose a functional definition
of the overlapping community in a modular net-
work, as well as a specific detection algorithm [Li
et al., 2008].
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2. Unstructured Network Structure

For our study, we first consider an initial graph G0

of n0 bidirectionally coupled Kuramoto phase oscil-
lators [Kuramoto, 1984], in which each node is ran-
domly connected with probability p = ln(n0)/n0 to
the rest. Once this structure is defined, the cou-
pling strength dnet is fixed so that this initial graph
does not display a phase synchronized motion. Over
this random core, a network formed only by links
to two pacemaker oscillators is progressively grown.
The pacemakers have frequencies, ω1 and ω2 respec-
tively, which are going to compete for controlling
the dynamics of G0.

The pacemakers ω1 (ω2) can establish links only
with the first i = 1, . . . , n0/2 (last i = n0/2 +
1, . . . , n00) nodes in G0. The new links have to be
unidirectional to preserve the pacemaker charac-
ter, and therefore, they result in a driving force
for G0. The external links have coupling strength
dp. Once the growing process is complete, the final
network has the structure illustrated in Fig. 1(a).
The dynamics is described by [Sendina-Nadal et al.,
2008; Kuramoto, 1984]:

φ̇i = ωi +
dnet

(ki + kpi)

n0∑

j=1

aij sin(φj − φi)

+
dpkpi

(ki + kpi)
sin(φp − φi) (1)

where i runs from 1 to n0, ki is the inner degree
of the ith oscillator, i.e. the number of connections
with other nodes in G0. kpi is its external degree,
defined as the number of unidirectional connections
with the forcing oscillator p, where p = 1 if i <
(n0/2) and p = 2 otherwise. The p pacemaker phase
is φp = ωpt, with p = 1, 2.

(a) (b)

Fig. 1. Network designs to study competition between frequency domains: (a) random unstructured network G0 controlled
by pacemakers ω1, ω2, (b) structured network with communities A, B overlapping by the module O.

The natural frequencies of the phase oscilla-
tors in G0 are {ω0i}, uniformly distributed within
the range 0.5 ± 0.25. The coefficients {aij} are the
n0×n0 elements of the adjacency matrix A = (aij),
describing the structure of the connections in G0,
with aij = 1 if the oscillators i and j are connected
and aij = 0 otherwise.

A very important point is the selection criteria
through which the pacemakers establish new links
with G0. We here consider a dynamical criterion
fully driven to enhance phase entrainment: when
a new link is created, it is attached preferentially
to that node in G0 whose instantaneous phase holds
more closely to the phase condition: mini=1,...,n0|δ−
∆θi mod 2π| where ∆θi = φi(t) − φp(t) and δ is
a constant, that we fix in the following as δ = π
[Sendina-Nadal et al., 2008]. We choose dp enough
to entrain both halves of G0 to the corresponding
pacemaker frequency. In the following, we will call
C1 (C2) to the G0 nodes entrained by ω1 (ω2).

2.1. Dependence on dnet

The previous procedure prepares our network G0

to have two domains of synchronization due to
the influence of the external pacemakers. Since the
inner coupling strength dnet is small, both frequen-
cies do not yet affect each other. Then, at this point,
we increase the value of dnet in order to gener-
ate a competitive dynamics between the external
frequencies for synchronizing the most part of the
network.

The results can be observed in Fig. 2, where we
plot the temporal moving average of the individ-
ual frequencies of all G0 nodes, for a network with
n0 = 200 (and therefore C1 = C2 = 100), ω1 = 0.3
and ω2 = 0.7. For increasing values of dnet, a small
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(a)

(b)

(c)

(d)

Fig. 2. Temporal moving average of the G0 nodes frequencies, for different dnet values: (a) 1.5, (b) 3.25, (c) 5.75, (d) 9.75.
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Fig. 3. (a) Average number of nodes of a cluster that remain in the same cluster (black), changes to the other cluster (blue),
or permanently oscillates between ω1 and ω2 (red). Total cluster size is 100 nodes. (b) Log–log plot of the oscillation period
of the overlapping cluster To as a function of ω∆ = ω2 − ω1.

fraction of nodes initially in C1 changes cluster and
synchronizes to C2, and vice versa [Fig. 2(a)]. But
more interestingly, for further increase of dnet, a
group of nodes start oscilling alternatively between
both frequencies [Fig. 2(b)]. The oscillating nodes
come from C1 and C2 without a clear preference.
For even higher values of dnet, the oscillation clus-
ter becomes bigger [Fig. 2(c)], and finally, for suf-
ficiently large dnet, the whole G0 oscillates between
both frequencies [Fig. 2(d)].

We can see this process more quantitatively in
Fig. 3, where as dnet changes, we plot the average
number of the nodes from a cluster that remains
in the same cluster (in black), changes to the other

cluster (in blue), or permanently oscillates between
ω1 and ω2 (in red). Here it can be seen that only
for intermediate values of dnet we find nodes that
permanently change cluster. This points out to a
strong influence of the topology on the individual
node behavior.

The oscillation frequency of the overlapping
cluster depends linearly on the entrainment fre-
quencies difference ∆ω = ω1 − ω0, as can be
observed in Fig. 3(b), where we show equivalently a
log-log plot of the oscillation period of the overlap-
ping cluster To as a function of ω∆. We see that the
data fits well to a dependence To ∝ 1/ω∆, which is
usually a signal of competitive dynamics.
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Fig. 4. Average degree of the nodes that remain, change or oscillate, as a function of: (a) total final degree, including
pacemaker links, (b) inner degree (links inside G0) and (c) inner crossed degree (with nodes belonging to the other cluster).
All the results are averaged over 10 realizations.
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2.2. Influence of the topology

Once we have observed how the competitive dynam-
ics works, we want to know how the topology of G0

determines the response. In particular, we study the
correlations between the degree of each node and its
dynamical behavior when the competition is work-
ing. In Fig. 4, we plot the average degree of the
nodes that remain, change or oscillate, as a func-
tion of different topological measures: (a) the total
degree ki + kpi , including pacemaker links, (b) the
inner degree ki, taking into account only links inside
G0, and finally in (c) only the initial G0 crossed
degree, i.e. the links with nodes belonging to the
other cluster of G0. It can be seen that, as expected,
a high total degree is needed for remaining in the
initial own cluster, since it assures a large number
of external links, and therefore, these nodes are very
influenced by the corresponding pacemaker. On the
other hand, the nodes that change cluster have few
external links, but a relatively strong connection
to the other cluster. The oscillating nodes are well
connected to both clusters, but their connection to
the pacemaker is not very intense. These measure-
ments show a clear correlation between the dynam-
ical behavior observed and the topological state of
each node.

3. Structured Network

Up to now we have studied the behavior of inter-
faces as the result of the competition of dynamical
domains implemented in unstructured networks.
However, it is even more interesting the case in

which the dynamical domains correspond to a mod-
ule in a structured network. So far, definitions of
network communities found in literature led essen-
tially to a topological partition into components
such that each node belongs to and only to one of
the components of the partition [Girvan et al., 2002;
Guimerá et al., 2005]. However, our results let us
suppose that in those cases in which two modules
overlaps [Palla et al., 2005], this group should reveal
its condition in a dynamical or functional way.

In order to study this case of competition for
modular graphs in the absence of external forcing
[dp = 0 and kpi = 0 ∀ i in Eq. (1)], we construct
a network with two communities A and B, each
one with 50 densely and randomly connected nodes
(〈k〉 = 16 inside community). Both of them overlap
through a small module O made of five nodes with
three random links to A and B, as illustrated in
Fig. 1(b). All nodes in these three communities are
associated with a phase oscillator following Eq. (1).
This equation is integrated for an initial distribu-
tion of frequencies such that nodes in A and B
have frequencies uniformly distributed in the inter-
vals 0.25 ± 0.25 and 0.5 ± 0.25 respectively, while
nodes in O have frequencies uniformly distributed
in the range 0.375 ± 0.05, that is, around the
mean frequency of the frequency distributions of A
and B.

In Fig. 5(a) we show that all nodes in the
main modules A and B are synchronized to the
mean of their respective original frequency distri-
bution, while O behaves as dynamical interface and
therefore displays an instantaneous frequency that

(a) (b)

Fig. 5. (a) Instantaneous frequencies φ̇i(t) versus time from simulation of Eq. (1) with d = 0.1 (other parameters and
stipulations are reported in the text). Squares, diamonds and full circles represent respectively nodes belonging to A, B and
O. (b) Log–log plot of the switching period TO of the oscillations in the frequency of the nodes in O versus the frequency
difference ω∆. The solid line represents a linear fit with slope −1.002 ± 0.007.
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Fig. 6. (a) Illustration of the constructed modular network, where the intersection between the two circles (communities) rep-
resents the overlapping community. Ci (see text for definition) versus node index, where overlapping nodes 1, 2, 3 (101, 102, 103),
labeled respectively with triangle, diamond and star, have: (b) asymmetrical, (c) symmetrical connections with nodes in main
clusters A and B.

synchronizes alternatively with modules A and B.
In Fig. 5(b) we plot the period of the frequency
oscillations of O, which as can be seen scales lin-
early with the frequency difference between the two
communities A and B, as in the unstructured case
in Sec. 2.

3.1. Detecting overlapping
communities

From the previous results we can derive an effec-
tive way to detect overlapping communities, defined
dynamically as the set of nodes that, instead of fol-
lowing the constant frequency of their nominal com-
munities, switch between two or more modules, and
therefore they cannot be considered as a functional
part of any of them.

In order to exemplify this idea, let us generate
a network with two very dense large moduli (A and
B of 100 nodes each), where a small group of nodes
form links with sites in both communities (see illus-
tration in Fig. 6(a)). To identify the overlapping
nodes, we introduce the quantity:

Ci = sgn[φ̇i(t) − ω]min
t
{|φ̇i(t) − ω|}

where ω̄ is the mean of the two averaged frequen-
cies assigned to the two communities. Parameter Ci

measures how close in time the dynamics of node i
is to ω̄, and therefore when the node belongs to
a synchronization interface Ci → 0. The results
are shown in Figs. 6(b) and 6(c) for two different
arrangements of the overlapping community: asy-
metrically [Fig. 6(b)] and symmetrically connected
overlapping nodes [Fig. 6(c)]. In both cases, two

large synchronized clusters are identified very far
from the overlapping synchronization, correspond-
ing to those nodes performing unambiguous tasks
and correctly classified by the usual modular par-
tition algorithms. Simultaneously, parameter Ci

evidences a group of nodes located significantly
out of the two main clusters (thus identifying
the overlapping community). In Fig. 6(b), each
overlapping node gives rise to a different value of
Ci in correspondence to its specific degree of over-
lapping due to the asymmetrical connectivity with
both main clusters. In Fig. 6(c), all nodes inside the
overlapping cluster are identified as a whole and fea-
ture the same value of Ci = 0 due to their symmet-
rical connections. The method can be succesfully
applied in real networks [Li et al., 2008].

4. Conclusions

We have shown that a complex network of phase
oscillators may display interfaces between domains
(clusters) of synchronized oscillations. The behavior
of these interfaces are considered for unstructured
and structured (modular) networks. The results
lead us to propose a functional definition of over-
lapping communities in modular networks, and to
develop a method to systematically obtain informa-
tion on overlapping nodes in both artificial and real
world modular networks.
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