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The stability of networks is greatly influenced by their degree distributions and in particular by their breadth.
Networks with broader degree distributions are usually more robust to random failures but less robust to localized
attacks. To better understand the effect of the breadth of the degree distribution we study two models in which the
breadth is controlled and compare their robustness against localized attacks (LA) and random attacks (RA). We
study analytically and by numerical simulations the cases where the degrees in the networks follow a bi-Poisson

distribution, P (k) = αe−λ1
λk

1
k! + (1 − α)e−λ2

λk
2

k! , α ∈ [0,1], and a Gaussian distribution, P (k) = Aexp(− (k−μ)2

2σ 2 ),
with a normalization constant A where k � 0. In the bi-Poisson distribution the breadth is controlled by the values
of α, λ1, and λ2, while in the Gaussian distribution it is controlled by the standard deviation, σ . We find that only
when α = 0 or α = 1, i.e., degrees obeying a pure Poisson distribution, are LA and RA the same. In all other
cases networks are more vulnerable under LA than under RA. For a Gaussian distribution with an average degree
μ fixed, we find that when σ 2 is smaller than μ the network is more vulnerable against random attack. When
σ 2 is larger than μ, however, the network becomes more vulnerable against localized attack. Similar qualitative
results are also shown for interdependent networks.
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I. INTRODUCTION

Complex networks are widely used as models to understand
such features of complex systems as structure, stability, and
function [1–22]. The robustness of networks suffering site
or link attacks is a topic of great interest because it is an
important issue affecting many real-world networks. Such
approaches as site percolation on a network where nodes
suffer either random attack (RA) [2–4] or targeted attack
(TA) based on node connectivity [2,3] have been developed
to study these phenomena. Localized attack (LA), in which
nodes surrounding a seed node are removed layer by layer,
has also been recently introduced [23,24]. In addition, inter-
dependent networks are more vulnerable to RA and TA than
isolated single networks [25–31]. LA on spatially embedded
interdependent networks has been addressed, and a significant
metastable regime where LA above a critical size propagates
throughout the whole system has also been found [24].

Although prior research has developed tools for probing
network robustness against all these attack scenarios and has
found that degree distribution breadth strongly influences
network stability [5], there has been no systematic study
of how degree distribution breadth affects robustness. Here
we compare LA and RA on two network models in which
the breadth is controlled. One model is bi-Poisson with
two groups having different average degrees. The difference
between the two average degrees characterizes the breadth of
the degree distribution of the network. Although research on
this topic usually focuses on a network with a pure Poisson
degree distribution, many real-world networks have two or
more degree distributions [32,33]. For example, a network
of two groups of people, a high-degree group with many
friends and a low-degree group with few friends, might reflect
a bi-Poisson distribution. Note that bi-Poissonian networks
are optimally robust against TA [32]. The second model in
which the breadth can be controlled is a Gaussian degree

distribution. Here the standard deviation σ characterizes the
breadth of the degree distribution. This distribution is realistic,
e.g., the distribution of WWW links resembles a Gaussian
distribution [34].

We here analyze the robustness against attack of networks
in which we can tune the breadth of the degree distributions,
e.g., those with bi-Poisson and Gaussian degree distributions.
We limit our approach to LA and RA and use the frameworks
developed in Refs. [4] and [23], extending them to study
(i) single networks with a bi-Poisson distribution, (ii) single
networks with a Gaussian distribution, (iii) fully interdepen-
dent networks with the same bi-Poisson distribution in each
network, and (iv) fully interdependent networks with the same
Gaussian distribution in each network. By changing α of the
bi-Poisson distribution,

P (k) = αe−λ1
λk

1

k!
+ (1 − α)e−λ2

λk
2

k!
, α ∈ [0,1], (1)

with fixed λ1 and λ2, and σ 2 of the Gaussian distribution,

P (k) = Aexp

(
− (k − μ)2

2σ 2

)
, k � 0, (2)

with μ fixed, we investigate how the distribution breadth
influences the percolation properties. These include the size
of the giant component P∞ as a function of p, the fraction
of unremoved nodes, and the critical threshold pc at which
the giant component P∞ first collapses. In all cases we find
that our extensive simulations and analytical calculations are
in agreement, and we observe the qualitative characteristics of
robustness in both single and interdependent networks under
both LA and RA.
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II. RA AND LA ON A SINGLE NETWORK

A. Theory

Following Ref. [35], we introduce the generating function
of the degree distribution P (k) of a certain network as

G0(x) =
∑

k

P (k)xk. (3)

Similarly, for the generating function of the underlying
branching processes, we have

G1(x) =
∑

k

P (k)k

〈k〉 xk−1 = G
′
0(x)

G
′
0(1)

. (4)

The size distribution of the clusters that can be reached
from a randomly chosen link is generated in a self-consistent
equation,

H1(x) = xG1[H1(x)]. (5)

Then the size distribution of the clusters that can be traversed
by randomly following a starting vertex is generated by

H0(x) = xG0[H1(x)]. (6)

Next we distinguish between random attack and localized
attack.

(I) Random attack. An initial attack with the random
removal of a fraction 1 − p of nodes from the network changes
the cluster size distribution of the remaining network and the
generating functions of the surviving clusters’ size distribution
become [4]

H1(x) = 1 − p + pxG1[H1(x)], (7)

and analogously,

H0(x) = 1 − p + pxG0[H1(x)]. (8)

Here pc, the critical value at which the giant component
collapses, is determined by

pc = 1

G
′
1(1)

, (9)

and

pc = 1

G
′
1(1)

= G
′
0(1)

G
′′
0(1)

, (10)

which is equivalent to the expression pc = 〈k〉/〈k(k − 1)〉
given in Ref. [3] and can be recast into pc = μ

σ 2+μ2−μ
with

μ = 〈k〉 and σ 2 = 〈k2〉 − 〈k〉2 as the mean and variance of the
degree distribution, respectively.

Thus for a bi-Poisson distribution, because G0(x) =
αeλ1(x−1) + (1 − α)eλ2(x−1), pc is

pc = αλ1 + (1 − α)λ2

αλ2
1 + (1 − α)λ2

2

. (11)

For a Gaussian distribution we have

pc =
∑∞

1 ke(−(k−μ)2/2σ 2)∑∞
2 k(k − 1)e(−(k−μ)2/2σ 2)

. (12)

The size of the resultant giant component is [4]

P∞(p) = 1 − H0(1) = p{1 − G0[H1(1)]}, (13)

which can be numerically determined by solving H1(1) from
its self-consistent equation

H1(1) = 1 − p + pG1[H1(1)]. (14)

(II) Localized attack. We next consider the local removal
of a fraction 1 − p of nodes, starting with a randomly
chosen seed node. Here we remove the seed node and its
nearest neighbors, next-nearest neighbors, next-next-nearest
neighbors, and continue until a fraction 1 − p of nodes have
been removed from the network. This pattern of attack reflects
such real-world cases as earthquakes or the use of weapons of
mass destruction. As in Ref. [23], the localized attack occurs
in two stages, (i) nodes belonging to the attacked area (the seed
node and the layers surrounding it) are removed but the links
connecting them to the remaining nodes of the network are left
in place, but then (ii) these links are also removed. Following
the method introduced in Refs. [23,36], we find the generating
function of the degree distribution of the remaining network
to be

Gp0(x) = 1

G0(f )
G0

[
f + G

′
0(f )

G
′
0(1)

(x − 1)

]
, (15)

where f ≡ G−1
0 (p). The generating function of the underlying

branching process is thus

Gp1(x) = G
′
p0(x)

G
′
p0(1)

. (16)

The generating function of the cluster size distribution fol-
lowing a random starting node in the remaining network is

Hp0(x) = xGp0[Hp1(x)], (17)

where Hp1(x), the generating function of the cluster size
distribution given by randomly traversing a link, satisfies the
self-consistent condition

Hp1(x) = xGp1[Hp1(x)]. (18)

The network begins to generate a giant component when
G

′
p1(1) = 1 [23], which yields pc as the solution to

G
′′
0

[
G−1

0 (pc)
] = G

′
0(1). (19)

The size of the giant component P∞(p) as a fraction of the
remaining network thus satisfies [23]

P∞(p) = p{1 − Gp0[Hp1(1)]}, (20)

which can be numerically determined by first solving Hp1(1)
from Eq. (18), i.e., Hp1(1) = Gp1[Hp1(1)].

In order to determine pc explicitly, we first get fc from
fc ≡ G−1

0 (pc), i.e., fc from G0(fc) = pc. Then from Eq. (19)
fc must also satisfy G

′′
0(fc) = G

′
0(1). In the general case, pc

and P∞ must be obtained by solving numerically Eqs. (19)
and (20). In certain limiting cases, however, one can derive
explicit analytical expressions for pc that yield more physical
insight. An example of a specific case is given in the next
subsection.
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1. Analytic solution of pc for bi-Poisson distribution
with λ2 = 2λ1

For a bi-Poisson distribution, using its generating function
and G0(fc) = pc, fc and pc satisfy the relation

G0(fc) = α[e(fc−1)]λ1 + (1 − α)[e(fc−1)]λ2 = pc. (21)

Assuming λ2 = 2λ1, we denote eλ1(fc−1) = y such that Eq. (21)
reduces to αy + (1 − α)y2 = pc, which, for α �= 1, is a
quadratic equation of y and its positive solution is

y =
√

α2 + 4pc(1 − α) − α

2(1 − α)
. (22)

Plugging fc into Eq. (19) we get another quadratic equation
of y,

αλ2
1y + (1 − α)λ2

2y
2 = αλ1 + (1 − α)λ2, (23)

for which the physical solution of y is

y =
√

α2λ4
1 + 4(1 − α)λ2

2[α(λ1 − λ2) + λ2] − αλ2
1

2(1 − α)λ2
2

. (24)

Because fc = ln(y)/λ1 + 1, to obtain pc we need to equate
Eqs. (22) and (24). Thus, we obtain

pc = (β − α)(β + 7α)

64(1 − α)
, (25)

where β =
√

α2 + 16(1−α)(2−α)
λ1

. We use the relation of λ2 =
2λ1 for simplification. Plugging α = 0 into Eq. (25), we get
pc = 1/λ2 as found in Ref. [23]. For α → 1, employing the
L’Hôpital rule we also get limα→1 pc = 1/λ1, as found in the
pure Poisson distribution described above.

It is impossible to derive pc explicitly for a Gaussian
distribution. Even for a bi-Poisson distribution, other than
special cases such as the one discussed above, deriving pc is
also impossible because it requires solving first fc = G−1

0 (pc),
i.e., fc from Eq. (21), which could be viewed as αyλ1 + (1 −
α)yλ2 = pc, a polynomial equation of y = e(fc−1). Because we
also consider the cases of λ2 > λ1 ≥ 4 using the Abel-Ruffini
theorem, there is no general algebraic solution to the above
equation except in some special cases. Hence we use the
Newton’s method to solve pc and P∞ numerically.

B. Results

To test the analytical predictions above we conduct numer-
ical calculations of analytic expressions, and we compare the
results with the simulation results on single networks with
degrees following both bi-Poisson distributions and Gaussian
distributions under both LA and RA. All the simulation results
are obtained for networks of N = 104 nodes.

1. Single bi-Poisson networks

Figure 1 shows the giant component P∞(p) as a function
of the occupation probability p under LA and RA. Note that
pc is larger for LA than for RA. The simulation results agree
with the theoretical results obtained from Eqs. (13) and (20),
and there is second-order percolation transition behavior in
both attack scenarios. Note that when α = 0 or 1, i.e., when
node degrees follow a pure Poisson distribution as reported
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FIG. 1. (Color online) Sizes of giant component, P∞(p), as a
function of p for λ1 = 4, λ2 = 12, and α = 0.7. Here solid lines are
theoretical predictions, from Eq. (13) for RA (red line) and Eq. (20)
for LA (green line), and symbols are simulation results with network
size N = 104, where averages are taken over 10 realizations, under
LA (©) and RA (�).

in Ref. [23], the networks have the same critical value of pc

under LA and RA and the same dependence of P∞(p) on p.
However, when α = 0.7, pc(LA) > pc(RA), indicating that
the network is more fragile under LA than under RA, and that
the giant components exhibit different behavior.

Figure 2 shows how the breadth of the distribution, tuned
by changing α with fixed λ1 and λ2, influences the robustness
of the network under LA and RA. The solid lines are the
numerical results obtained from the Newton’s method and the
symbols with error bars are the simulation results. Note that
only when α = 0 and α = 1 does pc(LA) = pc(RA). In all
other cases pc(LA) > pc(RA), indicating that the network is
always more vulnerable under LA than under RA if the degree
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0.1

0.15

0.2

0.25

0.3 LA
RA

FIG. 2. (Color online) Percolation thresholds pc of a single bi-
Poisson network as a function of α under LA and RA with λ1 = 4,
λ2 = 12. Here solid lines are theoretical predictions, from Eq. (11)
for RA (blue line) and Eq. (19) for LA (green line) and symbols (� for
RA and © for LA) with error bars are simulation results with network
size of N = 104 nodes, where averages and standard deviations are
taken over 20 realizations.
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FIG. 3. (Color online) Percolation thresholds pc of a single bi-
Poisson network as a function of σ 2 under LA and RA with α ∈ [0,1],
λ1 = 4, and λ2 = 12. Here solid lines are theoretical predictions, from
Eq. (11) for RA (blue line) and Eq. (19) for LA (green line) and
symbols (� for RA and © for LA) with error bars are simulation
results with network size of N = 104 nodes, where averages and
standard deviations are taken over 20 realizations.

distribution is bi-Poissonian. Note also that pc(LA) peaks at
α = 0.79.

Figure 3 shows how the percolation thresholds pc under LA
and RA change with σ 2 where α ∈ [0,1] and λ1 = 4 and λ2 =
12. Note that σ 2 = (α − α2)(λ1 − λ2)2 + αλ1 + (1 − α)λ2,
and as a quadratic function of α, σ 2 peaks at 24.25 when
α = 0.4375. Here in Fig. 3, as σ 2 first increases from 12
(α = 0) to 24.25 (α = 0.4375), pc(LA) and pc(RA) increase
accordingly; then as σ 2 begins turning back to decrease to 4
(α = 1), pc(LA) and pc(RA) behave differently and deviate
from their previous trajectories. Namely, for a same σ 2 value
corresponding to two different α values, there are two different
pc(LA) and pc(RA) values.

For the special case of λ2 = 2λ1, we compare the analytical
values of pc from Eqs. (11) and (25) using λ1 = 4 and λ2 = 8
with results obtained from the Newton’s method (see Fig. 4).
For this combination of average degrees, pc(LA) peaks at
α = 0.91. Note that the results agree, indicating that the
Newton’s method produces satisfactory results and therefore,
in the general case in which λ2 �= 2λ1 and in the cases of
Gaussian distribution, it can be used to get pc(LA).

Next we obtain the relationship between the mean and
variance of the bi-Poisson distribution as

σ 2

μ
= (α − α2)(λ1 − λ2)2

αλ1 + (1 − α)λ2
+ 1 � 1, (26)

where the equality holds when α = 0 or 1. We now set α =
0.5 and fix μ = 1

2 (λ1 + λ2) = 8 and gradually increase the
difference between λ1 and λ2 to increase σ 2 monotonically.
We find that when the distribution broadens, i.e., when σ 2

increases, pc(LA) increases but pc(RA) decreases (see Fig. 5).
Note that when σ 2 = μ holds, we have pc(LA) = pc(RA),
otherwise we have pc(LA) > pc(RA).
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LA (Numerical)
RA (Numerical) 

FIG. 4. (Color online) Comparison between numerical results
(symbols) and the analytic results (solid lines) for bi-Poisson
distribution with λ1 = 4 and λ2 = 8. Note that they agree with each
other well. Here, all the analytic results are obtained from Eq. (11)
for RA (red line) and Eq. (25) for LA (black line) and the numerical
results are attained by employing Newton’s method on Eqs. (11)
and (19), respectively.

2. Single Gaussian networks

Figure 6 shows the giant component P∞(p) as a function of
the occupation probability p under LA and RA, respectively,
for a single network with a Gaussian degree distribution.
Note that the simulation results and the theoretical results
obtained from Eqs. (13) and (20) agree, and that second-order
phase transition behavior is present in both attack scenarios.
Note also that μ = 4 and σ 2 = 2, and thus pc(LA) < pc(RA),

8 12 16 20 240.05
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FIG. 5. (Color online) Percolation thresholds pc as a function of
σ 2 of networks with bi-Poisson degree distribution under LA and RA
with α = 0.5 and μ = 8. Here solid lines are theoretical predictions,
from Eq. (11) for RA (red line) and Eq. (19) for LA (black line) and
symbols (� for RA and © for LA) with error bars are simulation
results with network size of N = 104 nodes, where averages and
standard deviations are taken over 20 realizations. It is shown here
that as σ 2 increases pc(LA) increases, whereas pc(RA) decreases
simultaneously and they overlap at σ 2 = μ = 8.
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FIG. 6. (Color online) Sizes of giant component as a function
of p of a single Gaussian network with μ = 4 and σ 2 = 2. Here
solid lines are theoretical results, from Eq. (13) for RA (blue line)
and Eq. (20) for LA (green line) and symbols are simulation results
obtained from network size of N = 104, where averages are taken
over 10 realizations under LA (©) and RA (�).

which indicates that the network is more robust under LA than
under RA for this particular distribution.

We fix μ and find that when the Gaussian distribution
broadens, i.e., when σ increases, pc(RA) decreases, but
that pc(LA) increases with σ (see Fig. 7). Note that when
σ 2 < μ, pc(LA) < pc(RA), and that the opposite is true when
σ 2 > μ. Note also that when σ 2 ≈ μ there is a crossing point
with pc(RA) ≈ pc(LA), which is analogous to a Poisson ER
network with the same mean and variance and the robustness
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FIG. 7. (Color online) Percolation thresholds pc as a function of
σ 2 of networks with Gaussian degree distribution under LA and RA
with μ = 4. Here solid lines are theoretical predictions, from Eq. (12)
for RA (red line) and Eq. (19) for LA (black line) and symbols (� for
RA and © for LA) with error bars are simulation results with network
size of N = 104 nodes, where averages and standard deviations are
taken over 20 realizations. It is shown here that as σ 2 increases
pc(LA) increases, whereas pc(RA) decreases simultaneously and
they intersect each other around σ 2 ≈ μ = 4.
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FIG. 8. (Color online) σ 2
X as a function of μ at the intersection

point where pc(LA) = pc(RA) for single networks where degrees
follow a Gaussian distribution.

of the network under both LA and RA is the same, as reported
in Ref. [23].

Figure 8 shows a plot of σ 2
X as a function of μ when this in-

tersection point occurs, i.e., when pc(LA) = pc(RA). Note that
except for some minor deviations at small μ values, because
k � 0 the Gaussian distribution is deformed, the region above
the extrapolation curve corresponds to pc(LA) > pc(RA), and
the region below corresponds to pc(LA) < pc(RA).

III. RA AND LA ON FULLY INTERDEPENDENT
NETWORKS

A. Theory

We apply the formalism of RA on fully interdependent
networks introduced in Ref. [25]. Specifically, we consider
two networks A and B with the same number of nodes N .
Within each network the nodes are randomly connected with
degree distributions PA(k) and PB(k), respectively. Every node
in network A depends on a random node in network B, and
vice versa. We also assume that if a node i in network A

depends on a node j in network B and node j depends on
node l in network A, then l = i, which rules out the feedback
condition [37]. This full interdependency means that every
node i in network A has a dependent node j in network B,
and if node i fails node j will also fail, and vice versa.

(I) Random attack. We begin by randomly removing a
fraction 1 − p of nodes and their links in network A. All the
nodes in network B that are dependent on the removed nodes
in network A are also removed along with their connectivity
links. As nodes and links are sequentially removed, each
network begins to break down into connected components.
Due to interdependency, the removal process iterates back and
forth between the two networks until they fragment completely
or produce a mutually connected giant component with no
further disintegration. As in Ref. [25] we introduce the function
gA(p) = 1 − GA0[1 − p(1 − fA)], which is the fraction of
nodes that belong to the giant component of network A,
where fA is a function of p that satisfies the transcendental
equation fA = GA1[1 − p(1 − fA)]. Similar equations exist
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for network B. When the system of interdependent networks
stops disintegrating, the fraction of nodes in the mutual giant
component is P∞, satisfying

P∞ = xgB(x) = ygA(y), (27)

where x and y satisfy

x = pgA(y),y = pgB(x). (28)

Excluding the trivial solution x = 0, y = 0 to the equation
set above, we combine them into a single equation by
substitution and obtain

x = gA[gB(x)p]p. (29)

A nontrivial solution emerges in the critical case (x =
xc,p = pc) by equating the derivatives of both sides of Eq. (29)
with respect to x,

1 = p2 dgA[pgB(x)]

dx

dgB(x)

dx
|x=xc,p=pc

, (30)

which, together with Eq. (28), gives the solution for pc and
the critical size of the mutually connected giant component,
P∞(pc) = xcgB(xc).

(II) Localized attack. When LA is performed on the one-to-
one fully interdependent networks A and B described above,
we can find an equivalent random network E with generating
function GE0(x) such that after a random attack in which 1 − p

nodes in network E are removed, the generating function of
the degree distribution of the remaining network is the same
as Gp0(x) [with the substitution of G0(x) by GA0(x)]. Then
the LA problem on networks A and B can be mapped to a RA
problem on networks E and B. By using GE0(1 − p + px) =
Gp0(x) and from Eq. (15) we have

GE0(x) = 1

GA0(f )
GA0

[
f + G

′
A0(f )

G
′
A0(1)GA0(f )

(x − 1)

]
. (31)

Thus, by mapping the LA problem on interdependent networks
A and B to a RA problem on a transformed pair of interdepen-
dent networks E and B, we can apply the mechanism of RA
on interdependent networks to solve pc and P∞(p) under LA.

Note that for pure Poisson distributions, f ≡ G−1
A0(p) =

ln(p)
λ

+ 1, and that by substituting f into Eq. (31) we get
GE0(x) = GA0(x). Thus, we find that pure Poisson distribu-
tions have exactly the same percolation properties for fully
interdependent networks under LA as those under RA, as found
in Ref. [25]. Because the extreme complexity of the above
equations makes it difficult to obtain explicit expressions for
pc and P∞(p) except when degree distributions are simple, we
resort to numerical calculations in general.

B. Results

1. Fully interdependent networks with bi-Poisson
degree distribution

We start with two fully interdependent networks in which
the degrees both follow the same bi-Poisson distribution and
carry out a RA on one of the networks, initiating a cascading
failure process that will continue until equilibrium is reached.
We then do the same procedure with the same setup but this
time using a LA to initiate the cascading failure process.
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FIG. 9. (Color online) Sizes of the mutually connected giant
component of the fully interdependent bi-Poisson networks as a
function of p for λ1 = 4, λ2 = 12, and α = 0.5. Here solid lines are
theoretical predictions, from Eq. (27) for RA (blue line) and similarly
for LA (green line), and symbols are simulation results with network
size N = 104, where averages are taken over 10 realizations, under
LA (©) and RA (�).

Figure 9 shows the size of the giant component P∞(p) of
the system as a function of the occupation probability p under
LA and under RA. Note that in both RA and LA scenarios
the simulation results and the theoretical results obtained
from Eq. (27) agree, indicating that our strategy of finding
an equivalent network under LA works. The first-order phase
transition that occurs in both attack scenarios indicates that the
interdependency of the system makes it much more vulnerable
to attack than single networks. When α = 0.5 the system is
more fragile under LA than under RA with pc(LA) > pc(RA),
and the giant components exhibit different behaviors.

Figure 10 shows how the breadth of the distribution, tuned
by changing α with fixed λ1 and λ2, influences the robustness of
the network under both LA and RA. Solid lines are numerical
results using the Newton’s method on Eq. (30) and symbols
with error bars are simulation results. Note that only when
α = 0 and α = 1 is P (k) reduced to a pure Poisson, and
we have pc(LA) = pc(RA) = 2.4554/〈k〉, as in Ref. [25].
When α deviates from 0 or 1, i.e., when P (k) deviates from
a pure Poisson distribution and takes the form of a bi-Poisson
distribution, pc(LA) > pc(RA), indicating that the system is
more vulnerable under LA than under RA.

Figure 11 shows how the percolation thresholds pc under
LA and RA change with σ 2 where α ∈ [0,1] and λ1 = 4 and
λ2 = 12. Similar to single bi-Poisson networks, here in Fig. 11,
as σ 2 first increases from 12 (α = 0) to 24.25 (α = 0.4375),
pc(LA) and pc(RA) increase accordingly; then as σ 2 begins
turning back to decrease to 4 (α = 1), pc(LA) and pc(RA) keep
increasing while deviating from their previous trajectories.
Namely, for a same σ 2 value corresponding to two different α

values, there are two different pc(LA) and pc(RA) values.
Next we set α = 0.5 and fix μ = 1

2 (λ1 + λ2) = 8 while
gradually increasing the difference between λ1 and λ2 to
increase σ 2 monotonically. We find that when the distribution
gets broader, i.e., when σ 2 increases, pc(LA) and pc(RA)

032122-6



HOW BREADTH OF DEGREE DISTRIBUTION INFLUENCES . . . PHYSICAL REVIEW E 92, 032122 (2015)

0 0.2 0.4 0.6 0.8 10.2

0.3

0.4

0.5

0.6

0.7 LA
RA

FIG. 10. (Color online) Percolation thresholds pc of the fully
interdependent bi-Poisson networks with λ1 = 4, λ2 = 12 as a
function of α under LA and RA. Here solid lines are theoretical
predictions, from Eq. (30) for RA (blue line) and similarly for LA
(green line) and symbols (� for RA and © for LA) with error bars
are simulation results with network size of N = 104 nodes, where
averages and standard deviations are taken from 20 realizations. When
α is not 1 or 0, pc(LA) is always larger than pc(RA).

increase (see Fig. 12) with pc(LA) � pc(RA), where the
equality holds at σ 2 = μ = 8.

2. Fully interdependent networks with Gaussian
degree distribution

We construct two fully interdependent networks in which
the degrees in each network follow the same Gaussian
distribution and carry out a RA on one of the networks to

4 8 12 16 20 240.2

0.3

0.4

0.5

0.6

0.7 LA
RA

FIG. 11. (Color online) Percolation thresholds pc of the fully
interdependent bi-Poisson networks with α ∈ [0,1], λ1 = 4, and
λ2 = 12 as a function of σ 2 under LA and RA. Here solid lines
are theoretical predictions, from Eq. (30) for RA (blue line) and
similarly for LA (green line) and symbols (� for RA and © for LA)
with error bars are simulation results with network size of N = 104

nodes, where averages and standard deviations are taken from 20
realizations.

8 12 16 20 240.3

0.32
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0.36

0.38

0.4

0.42
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RA

FIG. 12. (Color online) Percolation thresholds pc as a function of
σ 2 of networks with bi-Poisson degree distribution under LA and RA
with α = 0.5 and μ = 8. Here solid lines are theoretical predictions,
from Eq. (30) for RA (red line) and similarly for LA (black line).
Simulation results are marked with symbols (� for RA and © for LA)
where average and error bars are simulation results with network size
of N = 104 nodes, taken over 20 realizations. It is shown that as σ 2

increases, pc(LA) and pc(RA) increase and overlap at σ 2 = μ = 8.

initiate a cascading failure process that will continue until it
reaches a steady state. We repeat the action, but this time
using a LA. Figure 13 shows the sizes of the giant component
P∞(p) as a function of the occupation probability p under both
LA and RA. Note that simulation results and the theoretical
results obtained from Eq. (27) agree. When μ = 4 and σ 2 = 2
the system is more fragile under LA than under RA with
pc(LA) < pc(RA), and the giant components exhibit different
behaviors.

If we fix μ, when the Gaussian distribution broadens, i.e.,
when σ increases, analogous to what we find in a single

0.4 0.5 0.6 0.7p
0

0.2

0.4

0.6

P ∞

LA
RA

FIG. 13. (Color online) Sizes of the mutually connected giant
component of the fully interdependent Gaussian networks as a
function of p with μ = 4 and σ 2 = 2. Here solid lines are theoretical
predictions, from Eq. (27) for RA (red line) and similarly for LA
(black line), and symbols are simulation results with network size
N = 104, where averages are taken over 10 realizations, under LA
(©) and RA (�).
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FIG. 14. (Color online) Percolation thresholds pc as a function
of σ 2 of the fully interdependent Gaussian networks under LA and
RA with μ = 4. Here solid lines are theoretical predictions, from
Eq. (30) for RA (red line) and similarly for LA (black line) and
symbols (� for RA and © for LA) with error bars are simulation
results with network size of N = 104 nodes, where averages and
standard deviations are taken from 20 realizations. It is seen here
that as σ 2 increases pc(LA) increases and pc(RA) has a tendency
to decrease. As σ 2 approaches the value of μ, pc(LA) ≈ pc(RA),
which is manifested by the intersection point shown here.

Gaussian network, the critical pc behavior of the system differs
under LA from that under RA. Figure 14 shows the effect
of σ on pc in the fully interdependent Gaussian networks.
When σ 2 < μ, pc(LA) < pc(RA), and the opposite occurs

when σ 2 > μ. The intersection point in Fig. 14 is located
near σ 2 ≈ μ, similar to that in Poisson distribution networks.
Thus, the system behaves the same under LA as under RA,
confirming the results presented in the previous subsection.
Note that our results show that in both attack scenarios, the
interdependency of the system makes it much more vulnerable
to RA and LA compared to single networks (compare Fig. 14
to Fig. 7).

IV. CONCLUSIONS

In summary, we show that a LA on interdependent networks
can be mapped to a RA problem by transforming the network
under initial attack. We also show how the breadth of the degree
distribution affects the robustness of networks against RA and
LA, respectively. We show that, in general, as the degree
distribution broadens the network becomes more vulnerable
to LA than RA. This finding holds for both single networks
and interdependent networks. This finding also qualitatively
explains why the power-law distribution behaves differently
as the degree exponent changes [23].
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