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Fig. 2. The forecasting algorithm. We compare the average link strength 5(t) in the climate network (red curve) with a decision threshold (horizontal line,
here = 2.82) (left scale) with the standard NINO3.4 index (right scale), between January 1, 1950 and December 31, 2011. When the link strength crosses the
threshold from below, outside an El Nifio episode, we give an alarm and predict that an El Nifio episode will start in the following calendar year. The El Nifio
episodes (when the NINO3.4 index is above 0.5 °C for at least 5 mo) are shown by the solid blue areas. The first half of the record (A) is the learning phase
where we optimize the decision threshold. In the second half (B), we use the threshold obtained in A to predict El Nifio episodes. Correct predictions are
marked by green arrows and false alarms by dashed arrows. The index n marks a nonpredicted El Nifio episode. To resolve by eye the accurate positions of the
alarms, we show in S/ Appendix, Fig. S5 magnifications of those parts of Fig. 2 where the crossings or noncrossings are difficult to see clearly without
magnification. We also show the alarms for the slightly smaller threshold = 2.81 (S/ Appendix, Fig. S6), which yields the same performance in the learning
phase and one more false alarm in the prediction phase. The lead time between the prediction and the beginning of the El Nifio episodes is 0.94 + 0.44 y,

whereas the lead time to the maximal NINO3.4 value is 1.4 + 0.33 y.

To characterize the distribution of the best hit rates, we cal-
culated their mean and SD. The results, also shown in Fig. 34,
are well below the hit rates achieved with the observational
S(t) curve.

Fig. 3. The prediction accuracy [Receiver Operating Characteristic (ROC)-
type analysis]. (A) For the four lowest false-alarm rates = 0, 0.05, 0.1, and
0.15, the best hit rates D in the learning phase (Fig. 2A). The best results are
obtained at =0.1and 0.15. For = 0.1, the decision threshold is between
2.805 and 2.822. For = 0.15, is between 2.780 and 2.792. The results for
the randomized S(t) with error bars are shown as shaded circles. (B) The
quality of the prediction in the second half of the record, when the above
thresholds are applied. For 2.816 < < 2.822, we have D= 0.667 at = 0.048;
for 2.805 < < 2.816, we have D = 0.667 at = 0.095; and for 2.780 < <
2.792, we have D = 0.556 at = 0.048. For comparison, we show also results
for 6- and 12-mo forecasts based on climate models (21, 37). The shaded
squares and the error bars denote the mean hit rates and their SDs for
predictions based on the shuffled data.
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Next, we use the thresholds selected in the learning phase
to predict El Nifo episodes in the second half of the dataset
between 1982 and 2011, where we have 9 episodes and 21 non-
episodes. For  between 2.816 and 2.822, which is depicted in
Fig. 2B, the hit rate is D = 6/9 = 0.667—at a false-alarm rate =
1/21 2 0.048. For  between 2.805 and 2.816, the hit rate is also
D = 6/9, but the false-alarm rate is = 2/21 = 0.095. For 2.780 <

< 2.792, we have D = 5/9 =~ 0.556 at = 1/21 = 0.048. These
results are highly significant because the prediction efficiency is
considerably better than for the shuffled data.

For comparison, we show also the results for 6- and 12-mo
forecasts based on state-of-the-art climate models (21, 37). In ref.
21, an ensemble of model trajectories has been used, whereas
for the forecast of ref. 37, only a single trajectory has been used.
In both references, the forecast has been compared with the
NINO3.4 index, as in the current analysis. Fig. 3B shows that the
method suggested here for predicting El Nifio episodes more than
1 y ahead considerably outperforms the conventional 6-mo and
1-y forecasts. It should be noted that although one can tune lead
time and robustness in physical models, this is not possible in our
statistical predictions. In contrast to physical models, which pre-
dict the SST values in the relevant regions and use them for a
forecast of El Nifio, our algorithm instead employs the precursors
in the dynamical strength of the teleconnections in the climate
network to predict the onset of the warming.

Our results suggest that for enabling local perturbations of the
environment to instigate an El Nifio event, the network needs to
be in a “cooperative” state that can be characterized, to a certain
extent, by sufficiently large link strengths in the considered cli-
mate network. The cooperativity sets in well before the spring
barrier and thus allows for an early forecasting of ENSO. This
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situation might be related to the mechanism suggested in ref. 38
for optimal SST growth, which is essentially the emergence of a
certain spatial SST pattern, resembling our finding of a cooper-
ated fluctuation.

To study the robustness of the forecasting algorithm with re-
spect to the underlying network structure, we varied the size of
the El Nifio basin by (i) eliminating the grid point below the
equator in the middle of the Pacific (thus identifying the El Nino
basin with the union of NINO1, NINO2, NINO3, and NINO3.4
regions) and (ii) equating the El Nifo basin with the NINO1,
NINO2, NINO3, and NINO4 regions (thus raising the number of
the grid points in the basin to 17). In addition, we diluted the
network by connecting only 20% of the surrounding nodes with
the El Nino basin. We found that with all these modifications the
performance of the forecasting algorithm was only slightly re-
duced (SI Appendix, Figs. S7-S11). We also tested the perfor-
mance of the algorithm when the outer grid points are not in the
Pacific region but in Europe. The performance of this network
(81 Appendix, Fig. S12) was considerably weaker and comparable
with the incumbent 12-mo forecasts (Fig. 3). Finally, we tested
whether our algorithm can also forecast high levels (above the
SD) of the negative standard southern oscillation index (SOI),
which is strongly correlated to the NINO3.4 index (see, e.g.,
ref. 39). In contrast to the NINO3.4 index, the SOI uses atmo-
spheric data, the pressure difference between Tahiti and Darwin.
In SI Appendix, Fig. S13 we show that our algorithm is also able
to forecast high levels of the negative SOI, with a hit rate close to
0.67 at a false alarm rate close to 0.17.

In summary, we propose a climate-network approach to forecast
El Nifo episodes about 1 y ahead. Our approach is based on the
dynamic fluctuations of the teleconnections (links in the network)
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between grid points in the El Nino basin and the rest of the Pacific.
The strengths of the links are obtained from the cross-correlations
between the observed sea-surface-level air temperatures in the
grid points. We have shown explicitly that our method outper-
forms existing methods in predicting El Nino events at least 6-12
mo in advance. In contrast to the algorithms using model data, our
method is exclusively based on instrumental accounts that are
easily accessible. Thus, the results of this study can be straight-
forwardly reproduced.

We did not aim to forecast La Nifa events, where the NINO3.4
index is below —0.5 °C for more than 5 mo. In a trivial forecast,
one predicts that an El Nifio event will be followed by a La Nifa
event in the next year. This simple forecast has, in the considered
time window between 1950 and 2012, a hit rate close to 0.73 and
a false-alarm rate close to 0.17. An even better forecast of La Nifa
events using the climate network requires an additional precursor
to be found and is beyond the scope of this article.

Altogether, our findings indicate that El Nifio is a cooperative
phenomenon where the teleconnections between the El Nifio
basin and the rest of the Pacific tend to build up in the calendar
year before an event. For characterizing the teleconnections we
have used a univariate model where only one climate variable
(atmospheric temperature) has been used.

Finally, we note that our algorithm (Fig. 2B) did correctly pre-
dict the absence of an El Nifo event in 2012. This forecast was
made in 2011 already, whereas conventional approaches kept on
predicting the warming occurrence far into the year 2012 (40).
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In this supplemental material, we show

(i) a typical example of the cross-covariance function Cj;(¢; 7) between two
nodes in the considered climate network (Fig. 4). The strength of the link
between two nodes is determined as the maximum of the cross-covariance Cj7**
divided by its standard deviation in the time window with |7| < 200. The
average strength of the links in the climate network is determined by averaging
over all possible links between the nodes inside and outside of the El Nino basin;

(ii) magnifications of those parts of Fig. 2 in the Letter where the average
link strength S(¢) in the climate network (red curve) is close to the decision
threshold © and the crossings or non-crossings are difficult to see clearly without
magnification (Fig. 5). In addition we also show the result for the slightly smaller
threshold © = 2.81 (Fig. 6), which yields the same performance in the learning
phase and one more false alarm in the prediction phase.

(iii) two examples of the networks with modified definition of the El Nifio
basin, including 13 grid points (Fig. 7) and 17 grid points (Fig. 8), and the
prediction efficiency. The figures show the robustness of the El Nino prediction
algorithm to the modifications in the network structure and in particluar to the
choice of the El Nino basin;

(iv) three representative examples of the diluted climate networks with elim-
ination of 80% of the nodes outside of the El Nino basin (Figs. 9 — 11) and the
prediction efficiency. The figures show the robustness of the El Nino prediction
algorithm to the incompleteness of the data and the choice of grid points from
the outside basin;

(v) an example of the climate network, where the outside basin consists
of grid points from the European instead of the Pacific region (Fig. 12) and
the prediction efficiency. The figure shows that in this case the efficiency of
forecasting El Nino, contrast to the various configurations of the Pacific network,
is considerably reduced;

(vi) application of the algorithm to predict when the negative (standardized)
southern oscillation index (SOI) defined as the difference between the (standard-
ized) pressure of Darwin and the (standardized) pressure of Tahiti exceeds its
standard deviation. It is well known that the negative SOI is strongly corre-
lated with the NINO3.4 index. In Fig. 13 we show that our algorithm to forecast
El Nifio episodes can also be used to forecast the high levels of the SOI.
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Figure 4: (a) A representative example of the cross-covariance C; (¢; 7) function
between two nodes in the climate network. The horizontal red line shows the
mean value, the horizontal green dashed lines show the standard deviation. (b)
The normalized cross-covariance W;; defined as C;;(¢; 7) with subtracted mean
and divided by the standard deviation. The maximum value in (b) denotes the

link strength.
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Figure 7: (a) A climate network modification, where the El Nifio basin consisting
of the NINO 1, 2, 3 and 3.4 regions (red symbols) is linked to the nodes in the
Pacific outside the basin (open symbols) (compare with Fig. 1 in the Letter). (b)
shows for the four lowest false alarm rates «, the best hit rates D in the learning
phase (compare with Fig. 3a in the Letter). The best results are obtained at
a = 0.05 and 0.15. For a = 0.05, the decision threshold © is between 2.804
and 2.817. For @ = 0.15, O is between 2.710 and 2.716. (c) shows the quality
of the prediction in the second half of the record, when the above thresholds
are applied. For 2.804 < © < 2.817, we have D = 5/9 at o = 1/21, for
2.710 < © < 2.716, we have D = 5/9 at o = 2/21. For comparison, we show
also results for 6- and 12-months forecasts based on climate models (compare
with Fig. 3b in the Letter).
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Figure 8: (a) A climate network modification, where the El Nino basin consisting
of the NINO 1, 2, 3 and 4 regions (red symbols) is linked to the nodes in the
Pacific outside the basin (open symbols) (compare with Fig. 1 in the Letter).
(b) shows for the four lowest false alarm rates «, the best hit rates D in the
learning phase (compare with Fig. 3a in the Letter). The best result is obtained
at @ = 0.1, when the decision threshold © is between 2.828 and 2.838. (c) shows
the quality of the prediction in the second half of the record. When the above
thresholds are applied, we have D = 5/9 at a = 2/21. For comparison, we show
also results for 6- and 12-months forecasts based on climate models (compare
with Fig. 3b in the Letter).
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Figure 9: (a) A diluted climate network, where the El Nifio basin (red symbols)
is linked to the 20% of the randomly selected nodes in the Pacific outside the
basin (open symbols). (compare with Fig. 1 in the Letter) (b) shows for the four
lowest false alarm rates «, the best hit rates D in the learning phase (compare
with Fig. 3a in the Letter). The best results are obtained at a = 0.1 and
0.15. For a = 0.1, the decision threshold © is between 2.939 and 2.948. For
a = 0.15, O is between 2.874 and 2.889. (c) shows the quality of the prediction
in the second half of the record, when the above thresholds are applied. For
2.939 < © < 2.948, we have D = 5/9 at a = 1/21, for 2.874 < © < 2.889,
we have D = 5/9 at o = 3/21. For comparison, we show also results for 6-
and 12-months forecasts based on climate models (compare with Fig. 3b in the
Letter).
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Figure 10: (a) A diluted climate network, where the El Nifio basin (red symbols)
is linked to the 20% of the randomly selected (configuration 40 out of 100) nodes
in the Pacific outside the basin (open symbols) (compare with Fig. 1 in the
Letter). (b) shows for the four lowest false alarm rates «, the best hit rates D
in the learning phase (compare with Fig. 3a in the Letter). The best result is
obtained at o = 0.1, when the decision threshold © is between 2.783 and 2.798.
(c) shows the quality of the prediction in the second half of the record, when the
above thresholds are applied, we have D = 5/9 at o = 1/21. For comparison,
we show also results for 6- and 12-months forecasts based on climate models
(compare with Fig. 3b in the Letter).
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Figure 11: (a) A diluted climate network, where the El Nino basin (red symbols)
is linked to the 20% of the randomly selected nodes (configuration 83 out of
100) in the Pacific outside the basin (open symbols) (compare with Fig. 1 in
the Letter). (b) shows for the four lowest false alarm rates «, the best hit rates
D in the learning phase (compare with Fig. 3a in the Letter). The best result is
obtained at o« = 0.1, when the decision threshold © is between 2.783 and 2.807.
(c) shows the quality of the prediction in the second half of the record, when the
above thresholds are applied, we have D = 5/9 at o = 2/21. For comparison,
we show also results for 6- and 12-months forecasts based on climate models
(compare with Fig. 3b in the Letter).
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Figure 12: (a) A climate network modification, where the El Nifio basin (similar
to the basin in Fig. 1 of the Letter) is linked to the nodes in the European
region instead of the Pacific region (open symbols) (compare with Fig. 1 in
the Letter). (b) shows for the four lowest false alarm rates «, the best hit
rates D in the learning phase (compare with Fig. 3a in the Letter). The best
results are obtained at o = 0.15, when the decision threshold © is between
3.381 and 3.395. (c) shows the quality of the prediction in the second half of the
record, when the above thresholds are applied. For 3.381 < © < 3.388, we have
D =3/9 at o = 2/21, for 3.388 < © < 3.395, we have D = 3/9 at o = 3/21.
For comparison, we show also results for 6- and 12-months forecasts based on
climate models (compare with Fig. 3b in the Letter).
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Figure 13: Similar to Fig. 2 in the Letter, but for the mean link strength S(t)
(red, the same as in Fig. 2) and the negative (standardized) southern oscillation
index (blue). The threshold © is the same as in Fig. 2. We aim to predict
episodes where the negative SOI is above its standard deviation. When the link
strength crosses the threshold from below, we give an alarm. As in Fig. 2, green
arrows mark correct predictions, while the black dashed arrows mark the false
alarms. From the figure, we obtain a hit rate D = 14/21 = 0.67 at a false alarm

rate o = 7/41 = 0.17.
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