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Abstract

We study network configurations that provide optimal robustness to random breakdowns for networks with a given

number of nodes N and a given cost—which we take as the average number of connections per node hki. We find that the

network design that maximizes f c, the fraction of nodes that are randomly removed before global connectivity is lost,

consists of q ¼ ½ðhki � 1Þ=
ffiffi
h
p

ki�
ffiffiffiffiffi
N
p

high degree nodes (‘‘hubs’’) of degree
ffiffiffiffiffiffiffiffiffiffiffi
hkiN
p

and N � q nodes of degree 1. Also, we

show that 1� f c approaches 0 as 1=
ffiffiffiffiffi
N
p

—faster than any other network configuration including scale-free networks. We

offer a simple heuristic argument to explain our results.

r 2006 Elsevier B.V. All rights reserved.
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1. Introduction

Recently there has been much interest in determining network configurations which are robust against
various types of attacks [1–9]. While there have been studies of complex combinations of different types of
attacks, surprisingly, there has been no focused analysis of the elementary case of robustness against simple
random breakdowns or attacks. As a measure of the robustness of the network, we study the quantity f c, the
fraction of nodes that are randomly removed before global connectivity is lost.

We first study simple random networks. Simple networks contain no self loops or multiple edges neither of
which add to the robustness of a network to random removal of nodes. For simple random networks we can
determine the optimal network configuration analytically. Randomly constructed networks, however, may
have disconnected components, so we also consider networks constructed in a way that ensures they consist
initially of a single cluster of connected nodes. These networks are degree correlated. For degree correlated
networks, there currently exist no closed-form expressions with which we can determine f c analytically, so we
study them using Monte Carlo simulations. We find that the optimal configuration for both the randomly
constructed and the degree correlated networks consists of q�

ffiffiffiffiffi
N
p

high degree nodes (hub nodes) of degree
k2�

ffiffiffiffiffi
N
p

and N � q nodes of degree 1 (leaf nodes).
e front matter r 2006 Elsevier B.V. All rights reserved.
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2. Uncorrelated networks

2.1. Theory

We first treat simple random networks. It is known [10–13] that for any desired random degree distribution,
simple networks can be created only if PðkÞ ¼ 0 for k greater than the structural cutoff

Ks �
ffiffiffiffiffiffiffiffiffiffiffi
hkiN

p
. (1)

So we must limit our networks to those with maximum degree less than
ffiffiffiffiffiffiffiffiffiffiffi
hkiN
p

. For networks with this
constraint we can use the equation [3]

f c ¼ 1�
1

k� 1
, (2)

where

k �
hk2
i

hki
(3)

to determine f c. The domain of validity of Eq. (3) is discussed in detail in Ref. [14].
Since we fix hki, maximizing f c is equivalent to maximizing hk2

i. We must maximize

hðPÞ �
XKs

k¼1

k2PðkÞ (4)

under the following constraints:

PðkÞX0, (5)

XKs

k¼1

kPðkÞ ¼ hki, (6)

XKs

k¼1

PðkÞ ¼ 1. (7)

We first show that there can be no more than two unique values of k at which PðkÞ is non-zero if hðPÞ is to be
maximized. Assume that there are m42 non-zero values Pðk1Þ;Pðk2Þ;Pðk3Þ . . .PðkmÞ needed to maximize hðPÞ.
Using the method of Lagrange multipliers [15] we can write

q
PKs

i¼1k2
i PðkiÞ

� �
qPðkjÞ

þ l1
q
PKs

i¼1kiPðkiÞ � hki
� �

qPðkjÞ
þ l2

q
PKs

i¼1PðkiÞ

� �
qPðkjÞ

¼ 0 (8)

or

k2
j þ l1kj þ l2 ¼ 0 ð1pjpmÞ, (9)

where l1 and l2 are constants. Solving (9) we find at most only two unique solutions for the values of kj.
Analyzing the problem now with only two values k1 and k2 for which PðkÞ are non-zero, we find that hðPÞ is

maximized when k1 and k2 take on the boundary values

k1 ¼ 1, (10a)

k2 ¼ Ks, (10b)

and

Pðk1Þ ¼ 1�
hki � 1ffiffiffiffiffiffiffi
hki
p

1ffiffiffiffiffi
N
p , (11a)
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Pðk2Þ ¼
hki � 1ffiffiffiffiffiffiffi
hki
p

1ffiffiffiffiffi
N
p . (11b)

For these values 1� f c assumes its minimal value

ð1� f cÞmin ¼
hki

ffiffiffiffiffiffiffiffiffiffiffi
hkiN
p

ðhki � 1Þð1� hkiN þ
ffiffiffiffiffiffiffiffiffiffiffi
hkiN
p

Þ
. (12)

For large N,

ð1� f cÞmin�

ffiffiffiffiffiffiffi
hki
p

ðhki � 1Þ

1ffiffiffiffiffi
N
p . (13)

2.2. Simulations

We next perform Monte Carlo simulations to test the results found above. We consider the degree
distribution that represents a network of q hub nodes and N � q leaf nodes,

PðkÞ ¼

N � q

N
; k ¼ 1;

q

N
; k ¼ k2;

0 otherwise;

8>>>><
>>>>:

(14)

where

k2 ¼
ðhki � 1ÞN þ q

q
. (15)

Our aim is to find the value of q which maximizes the robustness of the network.
We create networks using the method described in Ref. [16]. We then randomly delete nodes in the network

and after each node is removed, we calculate k. We use the criterion

ko2 (16)

for loss of global connectivity [3,4,6,16]. When k becomes less than 2 we record the number of nodes nr

removed up to that point. This process is performed for many realizations of random graphs with the degree
distribution of Eq. (14) and, for each graph, for many different realizations of the sequence of random node
removals. The threshold f c is defined as

f c �
hnri

N
, (17)

where hnri is the average value of nr.
In Fig. 1(a), we plot 1� f c versus q for N ¼ 102; 103; 104 and 105 and hki ¼ 2. In Fig. 2(b) we plot the

location of the minima qmin versus N. As expected qmin scales with N as N0:5 and as shown in Fig. 2(c) the
minimum values of 1� f c scale as N�0:5.

Also shown in Fig. 1(a) are plots for approximations to f c, f high
c and f low

c , which we expect to be valid,
respectively, for high and low values of q. We will use these approximations as another way to show that qmin

and ð1� f cÞmin scale as found above. The approximations are determined as follows:
(i)
 When q�N (i.e., the network is homogeneous), we expect Eq. (2) to hold, so f high
c ¼ 1� 1=ðk� 1Þ. For

general hki, using the distribution in Eqs. (14), we find for Nbqb1

f high
c ¼ 1�

q

ðhki � 1ÞN
. (18)
(ii)
 As found in Ref. [14], Eq. (2) is not valid for small q. We must use an approximation based on the fact that
for small q the network loses global connectivity when all q high degree nodes are removed. To first order
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Fig. 1. For hki ¼ 2 and for (from left to right) N ¼ 102; 103; 104 and for random networks only 105 (a) 1� f c versus number of hubs q.

The solid and dotted lines represent uncorrelated and correlated networks, respectively. Dashed lines(short) are approximation f low
c ;

dashed lines(long) are approximation f high
c . (b) Values of q, qmin, at which 1� f c is minimal versus N. Squares and triangles represent

uncorrelated and correlated networks, respectively; circles represent q� the value of q at which the approximations f high
c and f low

c intersect.

(c) Minimum values of 1� f c versus N. Squares and triangles represent uncorrelated and correlated networks, respectively; circles

represent the values of ð1� f cÞ at q ¼ q�.
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in 1=q [14]

1� f low
c ¼ 1�

1

q
. (19)
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Fig. 2. (a) Values of q, qmin, at which 1� f c is minimal versus N. Squares, triangles and circles represent network with hki ¼ 2; 3, and 4,

respectively. (b) Minimum values of 1� f c versus N. Squares, triangles and circles represent networks with hki ¼ 2; 3, and 4, respectively.
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Equating Eqs. (18) and (19) we find the value of q at which the approximations intersect

q� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hki � 1

p ffiffiffiffiffi
N
p

. (20)

From the fact that q� scales like
ffiffiffiffiffi
N
p

, we conclude that all characteristic values including the location of the
minimum of ð1� f cÞ scale like

ffiffiffiffiffi
N
p

with a prefactor dependent on hki.
From Eqs. (19) and (20) we find for large N,

1� f �c ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hki � 1
p

1ffiffiffiffiffi
N
p , (21)

where f �c is the value of value of f c where the approximations intersect. The scaling of q� and 1� f c� are
shown in Figs. 1(b) and (c).

We next study the effect of changing hki. Figs. 2(a) and (b) contain plots of qmin and ð1� f cÞmin,
respectively, for hki ¼ 2; 3, and 4. We note that the scaling is independent of hki with only a change in the
prefactor.

3. Correlated networks

In Fig. 3(a) we show an example of a randomly created graph. Note that, because the graph is created
randomly, there are some disjoint portions of the graph consisting of pairs of nodes connected to each other.
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(a)

(b)

Fig. 3. Examples of 100 node networks with degree distribution given by Eqs. (14) with hki ¼ 2: (a) uncorrelated network. Note that there

are disconnected pairs of nodes of degree 1; (b) correlated network in which each degree 1 node is connected to a high degree node.
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Thus the network does not consist of a single connected component. We now study correlated networks which
do not have this shortcoming by disallowing connections between degree 1 nodes so that the resulting network
is a single cluster (see Fig. 3(b) which has the same degree distribution as Fig. 3(a)).

For correlated networks, the criteria for network collapse is [17]

detðAÞ ¼ 0, (22)

where A is a matrix containing elements Aj;k ¼ kej;k þ qjdi;j with ej;k the joint probability of the remaining
degrees [18] of the two vertices at either end of a randomly chosen edges and with qk the probability of the
remaining degree of a single vertex at the end of a randomly chosen edge.

We create networks having the degree distribution of Eq. (14) with hki ¼ 2 but with the constraint that leaf
nodes cannot be connected to each other. We proceed as for uncorrelated networks except that after removal
of an edge instead of calculating k we calculate detðAÞ and note the number of nodes removed before
detðAÞ ¼ 0.
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In Fig. 1(a) we plot 1� f c versus q for N ¼ 102; 103 and 104 [19]. We note that the plots are similar to but
slightly higher than the corresponding plots for the random networks. In Fig. 1(b) we plot the values of q at
which 1� f c is minimal and see that they scale in a manner similar to the scaling of the positions of the
minima for the random networks.
4. Comparison with scale-free networks

Scale-free networks with lo3 are known to be very robust against random attack [1,3] with 1� f c

approaching zero as N !1. Here, we determine the large N behavior of 1� f c for scale-free networks for a
given value of hki and compare the behavior with that of the optimal bimodal network.

We consider a scale-free degree distribution PðkÞ�k�l with mpkpK . For large K and 2olo3 [3],

k ¼
2� l
3� l

ml�2K3�l. (23)

Substituting in Eq. (2) and setting K ¼ Ks we find that for large K

1� f c�K3�l�N ðl�3Þ=2. (24)

Only in the limit of l approaching 2 does 1� f c�N�0:5 similar to Eq. (13). For lo2,

k ¼
2� l
3� l

K�
ffiffiffiffiffi
N
p

(25)

and

1� f c�
1ffiffiffiffiffi
N
p , (26)

but for lp2, hki diverges with increasing K. Thus for a given value of hki, 1� f c for the optimal bimodal
network always approaches 0 faster than the optimal scale-free network [20].

For completeness, to ensure that large variance is not a deficiency of the optimal network, we now study
how the variance in f c of the optimal network compares with the variance of the scale-free networks.
Specifically in Fig. 4 we plot the standard deviation

s ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hðnr � hnriÞ

2
i

q
N

(27)
102 103 104

N

10−2

10−1

100

0.5σ

Fig. 4. Standard deviation in f c versus N. Squares represent optimal bimodal configuration for hki ¼ 2. Triangles represent scale-free

configuration with l ¼ 2.
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versus N for the optimal bimodal network with hki ¼ 2 and for a scale-free network with l ¼ 2. For the scale-
free network with l ¼ 2, 1� f c�N�0:5 although it has a large value of hki. We see that the standard deviation
of f c of both networks decreases as N�0:5 with the scale-free network having a somewhat smaller prefactor
than the optimal network. Thus the variance of f c is not a deficiency of the optimal network.

5. Heuristic argument for optimal configuration

We now provide a heuristic argument for the optimal configuration which applies to random or correlated
networks. As shown above, the configuration consists of q�

ffiffiffiffiffi
N
p

high degree nodes (hubs) of degree
ffiffiffiffiffiffiffiffiffiffiffi
hkiN
p

and N � q nodes of degree 1. Intuitively, we suspect that the optimal configuration is one in which there are
many leaf nodes with degree 1 connected to a network core composed of a much smaller number of highly
connected hubs node. Removing a leaf node has only a minimal impact on the connectivity of the network
while removing a hub has a much greater impact—but is much less probable. It is not obvious, however, how
many hubs there should be. One might initially suppose that the most robust network would be a single hub
node connected to all the remaining nodes (a star network). It is easy to show [14], however, that f c ¼

1
2
for this

network which is far from optimal. To determine the number of hubs we proceed as follows. Consider first
that there are hkiN connections available to construct the network. Let q denote the number of hubs. The
number of connections needed to connect the hubs to the leaf nodes is 2ðN � qÞ. If we then make the argument
that we want the hubs to form a complete graph using the remaining connections we have

qðq� 1Þ ¼ hkiN � 2ðN � qÞ. (28)

Solving for q for large N we have

q�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hki � 2

p
�
ffiffiffiffiffi
N
p

(29)

and we again find that the number of hubs scales as
ffiffiffiffiffi
N
p

in a manner similar to that implied by Eq. (11b),

q ¼
hki � 1ffiffiffiffiffiffiffi
hki
p

� � ffiffiffiffiffi
N
p

, (30)

for the optimal network with a different prefactor.

6. Discussion and summary

We have shown analytically and confirmed numerically using Monte Carlo simulations that networks with
bimodal degree distributions, with q�

ffiffiffiffiffi
N
p

high-degree nodes (hubs) and N � q nodes of degree 1, are most
robust to random breakdown. Also we have shown that 1� f c approaches 0 as 1=

ffiffiffiffiffi
N
p

, faster than any other
network configuration including scale-free networks. Finally, we have offered a simple heuristic argument
which explains these results.
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