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This study is concerned with the characteristics of regular (isotropic) percolation clusters above the

critical threshold pc. Analytic arguments for the general dimension case, and numerical results for the

two-dimensional case, lead to the conclusion that the characteristics of the shortest paths (defined as the

chemical distance l) between given two sites on a percolation cluster are similar to the characteristics of

optimal paths in the directed polymer model. A corollary which should be valid for the general dimension

case, and verified by numerical results for the two-dimensional case, is that a cluster whose sites are at

chemical distance l from a given site forms a Kardar-Parisi-Zhang surface.
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The percolation model [1–3], the directed polymer
model [4], and the Kardar-Parisi-Zhang (KPZ) equation
[5] are fundamental models for many real systems and the
subjects of numerous studies in the past decades. The
relation between the directed polymer model and the
KPZ equation is well established [6], but no relation was
found between the percolation model and directed poly-
mers or KPZ surfaces. Analytic arguments and numerical
results presented in this Letter indicate that there is a
natural connection between the percolation model and
the directed polymer model and that the percolation model
should be added to Eden growth and ballistic deposition
[7], as one of the main models which form KPZ surfaces.
Specifically, it is shown that, above the critical threshold
pc, any shortest path on a percolation cluster has the
characteristics of directed polymers and that the sites of
equal shortest distance from a given site represent a KPZ
surface.

Most studies of the percolation model have been focused
on the characteristics of clusters near the critical threshold
pc, while the present study addresses the characteristics of
clusters well above this threshold. A simple way to study
the characteristics of percolation clusters is to grow them
from a seed placed at ð0; 0Þ [8,9]. The present numerical
study is focused on bond percolation clusters grown on a
square lattice, but the conclusions are general and should
be valid for the general cases of bond and site percolation
and for any dimension. In the standard growth process, at
each growth step l, the sites connected to the seed at step
l� 1 are scanned, and the bonds leading from each site to
its four nearest neighbors are considered: Bonds which
were generated in former growth steps are left untouched,
and the new neighboring bonds are generated and ran-
domly assigned with 0 or 1, where a 0 valued bond is a
connecting bond. The probability for a connecting bond is
denoted by p, and in the present study p was chosen to be
higher than 0.5, the critical probability (threshold) of regu-
lar (isotropic) bond percolation, but lower than 0.6447, the
critical probability of directed percolation [10,11] in the

diagonal direction. At each growth step l, the new sites
added to the cluster are assigned with l, which is their
chemical distance from the seed. (The chemical distance
between two sites is defined as the length of the shortest
path which connects them.) This random growth process
generates a typical cluster whose sites are at a chemical
distance � l from a given site. Note that the same cluster
can be generated by assigning random values only to the
bonds leading from sites connected at step l� 1 to their
unconnected nearest neighbors. In this alternative method,
which was used in the present study, all of the connected
sites but not all of the connecting bonds are generated. In
this case, every connected site has only one and unique
path which connects it to the seed.
In the directed polymer model, any site is usually con-

nected to the origin (seed) by a large number of paths, and
the optimal (minimal energy) path is defined as the path
with the lowest sum of random bond values (energy). For a
site at distance t from the origin, the energy standard
deviation of the optimal path is proportional to t!, and
the mean transversal distance of the path from the straight
line which connects the site to the origin is proportional to
t�. In the two-dimensional case, the values of ! and � are
1=3 and 2=3, respectively. Though the original study [4]
considered directed paths, which are not allowed to go
backwards, it was shown [12–15] that even free optimal
paths between two sites are characterized by the same
growth exponents: 1=3 and 2=3.
It is possible to map the present case to the directed

polymer case in a simple way as follows: The 1 valued
bonds are assigned with a very large number, while the 0
valued bonds are assigned with 1. In this case, the shortest
path of length l between two sites of the percolation cluster
is also by definition the optimal path of energy l which
connects them. At this stage, a distinction should be made
between the situation above pc and the situation at (or
below) pc. Above pc the length of the shortest path which
connects two sites at distance R is�R, while at (or below)
pc such a path is a fractal whose length is �RDf , Df > 1.
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Note that this distinction is similar to the one presented in
Refs. [12,13] for the strong disorder distribution [rather
than the ð0; 1Þ distribution]. As a consequence, the shortest
paths above pc should present the characteristics of the
minimal energy paths in the directed polymer model, while
such paths at (or below) pc are completely different. The
numerical results presented below for p > pc support the
above arguments.

Most of the numerical results were obtained for p ¼
0:5529. Obviously, these results should be valid for all of
the range of p values between 0.5 and 0.6447. (The cases of
p � 0:5 and p > 0:6447 are discussed at the end.)

The variables whose values were numerically estimated
are as follows.

(1) ldðtÞ: The number of growth steps at the first arrival
to a site with coordinates ði; jÞ, where jij þ jjj ¼ t. These
sites form the four sides of the square of diagonals between
ð�t; 0Þ and ð0;�tÞ. [The value of p ¼ 0:5529 was chosen

because at this probability ldðtÞ ’ 1:1t.]
(2) lvðtÞ: The number of growth steps at the first arrival

to a site with coordinates ði; jÞ, where Maxðjij; jjjÞ ¼ t.
These sites form the four sides of the square lattice whose
edges are at ð�t; tÞ, ðt; tÞ, ðt;�tÞ, and ð�t;�tÞ.

(3) lminðtÞ: The number of growth steps at the first arrival

to a site with coordinates ði; jÞ, where ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiði2 þ j2Þp � t. The
relevant sites (nearly) form a circle of radius t around the
seed.

(4) DdðtÞ: The distance between the site ði; jÞ with jij þ
jjj ¼ t, mentioned at (1), and the coordinate ð�t=2;�t=2Þ,
which is at the center of the relevant diagonal side.

(5) DvðtÞ: The distance between the site ði; jÞ, where
Maxðjij; jjjÞ ¼ t, mentioned at (2), and the coordinate
ð�t; 0Þ or ð0;�tÞ, which is at the center of the relevant
vertical or horizontal side.

(6) RdðlÞ: The maximal diagonal distance of the cluster
from its seed, after l steps of growth. This distance is

defined by the maximal value of
ffiffiffi

2
p

t of the sites of the
cluster whose coordinates are ð�t;�tÞ.

(7) RvðlÞ: The maximal horizontal or vertical distance of
the cluster from its seed, after l steps of growth. This
distance is defined by the maximal value of t of the sites
of the cluster whose coordinates are ð�t; 0Þ or ð0;�tÞ.

(8) RmaxðlÞ: The maximal geometrical distance
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

i2 þ j2
p

from the seed to any of the sites of the cluster after l steps
of growth.

Note that the number of growth steps at the first arrival to
a site is identical to the length of the shortest path between
this site and the origin. In view of the mapping presented
above, the characteristics of these shortest paths should be
similar to the characteristics of the minimal energy paths in
the directed polymer model.

Consider first ldðtÞ, lvðtÞ, and lminðtÞ and denote by �ðtÞ
their standard deviations. The numerical results indicate
that these standard deviations are proportional to t!, and
the local values of the exponent !, computed by
log2½�ðtÞ=�ðt=2Þ� are presented in Fig. 1.

Obviously, for large enough t, the three curves should
converge to a common asymptotic value, and their differ-
ence is an outcome of finite size effects. The data presented
in the figure point at an asymptotic value which is in the
vicinity of 1=3, the directed polymer value. It should be
emphasized that the error bars associated with the results
presented in this figure, and in all of the following figures,
are smaller than the size of the symbols, and thus the
results are practically error-free. Even the slight rise and
fall of the upper curve of Fig. 1 is an outcome of finite size
effects and not of estimation errors.
The similarity between the shortest paths in the present

case and the lowest energy paths in the directed polymer
case implies thatDdðtÞ andDvðtÞ should be proportional to
t�, where � has the directed polymer value of 2=3. The
local values of the exponent � estimated for these variables
are presented in Fig. 2.
In this case the values are very close to 2=3, and the

influence of finite size effects is weak compared to the data
presented in Fig. 1. The fact that, in the directed polymer
model, the local values of � are much less sensitive to finite

240 480 960 1920 3840

t
0.31

0.32

0.33

0.34

0.35

0.36

0.37

0.38

L
oc

al
 v

al
ue

s 
of

 th
e 

ex
po

ne
nt

 ω

l
d 

(t)

l
v
(t)

l
min

(t)

FIG. 1. The local values of the exponent ! estimated for ldðtÞ
(squares), lvðtÞ (circles), and lminðtÞ (triangles).
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FIG. 2. The local values of the exponent � estimated for DdðtÞ
(squares) and DvðtÞ (circles).
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size effects than the local values of ! was already noticed
in Ref. [16].

The above discussion refers to the characteristics of the
shortest paths between the seed at the center and predeter-
mined lines (or a curve) on the lattice. The shape of the
cluster whose sites are at chemical distance � l from the
seed is determined by the variable R�ðlÞ, which is the
maximal distance of the sites of this cluster in the direction
of the angle �. In the numerical study, it was found that

R�ðlÞ has a maximum at � ¼ 0; 90; 180; 270 and
Max½R0ðlÞ; R90ðlÞ; R180ðlÞ; R270ðlÞ� is denoted above by

RvðlÞ. The minimum of R�ðlÞ is attained at � ¼
45; 135; 225; 315, and Max½R45ðlÞ; R135ðlÞ; R225ðlÞ; R315ðlÞ�
is denoted above by RdðlÞ. The numerical results indicate

that at p ¼ 0:5529 the ratio RvðlÞ=RdðlÞ ’ 1:013, suggest-
ing that the shape of the cluster is close to, but not exactly, a
perfect circle. Naturally, the value of this ratio depends on
p: The closer p is to 0.5, the closer this ratio is to 1.

The roughness of the circumference of the cluster is
determined by the standard deviation of R�ðlÞ and by the
lateral correlations along the circumference. Note that the
minimal number of growth steps needed to arrive at a fixed
distance from the seed and the maximal distance from the
seed arrived after a fixed number of growth steps are
complementary variables, and it can be expected that their
standard deviations would have the same growth exponents
and thus that the surface of a percolation cluster whose
sites are at chemical distance� l from a given site forms a
KPZ surface. (Compare to the results related to the Eden
growth model presented in [12].)

In order to find the dependence of the standard devi-
ation of R�ðlÞ on l, the standard deviations of RdðlÞ, RvðlÞ,
and RmaxðlÞ were estimated, and, as expected, the numeri-
cal results indicate that their dependence on l is similar to
the one presented in Fig. 1. The local values of the ex-
ponent ! estimated for these three variables are presented
in Fig. 3, and the only significant difference between
Figs. 1 and 3 is the final rise of the two lower curves in
Fig. 3, which supports the conclusion that the common

asymptotic value of all six curves presented in Figs. 1 and 3
is 1=3.
The lateral correlations of KPZ surfaces are known to be

proportional to R2=3 [6]. In view of the results presented in
Fig. 2, it can be expected that the lateral correlations in the
present percolation cluster case should also grow in a
similar way. The lateral correlations were defined by

½Rð0ÞRðiÞ � Rð0ÞRðiÞ�=f�½Rð0Þ��½RðiÞ�g, where RðiÞ is
the maximal geometrical distance between the seed and
the sites whose horizontal coordinate is i and �ðRÞ is the
standard deviation of the distance R. These lateral corre-
lations were estimated for i ¼ 1; 2; 4; 8; . . . , etc. For i �
R, there is no significant difference between i and the
distance along the circumference of the circle whose radius
is R. Note that, if the correlations grow in proportion to

l2=3, the values recorded for ðl; iÞ and ðl� 23=2; 2iÞ should
be equal. The correlations estimated for l ¼ 2168 and l ¼
6132 ’ 2168� 23=2 are presented in Fig. 4.
As can be seen, for 1 � i � 64 the correlations esti-

mated for ð2168; iÞ and ð6132; 2iÞ are quite close, and the
differences are attributed to finite size effects (and not to
estimation errors). Of course, the results obtained for
i � 128 are mainly affected by the relatively small value
of l and not by finite size effects.
In the case that p � pc, the situation is completely

different. After l growth steps, the cluster is composed of
few and scattered strands of sites, and the surface of the
cluster has an erratic shape which certainly does not
present KPZ characteristics.
In the case that p is higher than 0.6447, the diagonal

directed percolation pc, there is a difference between the
diagonal directions and the horizontal or vertical direc-
tions. In the diagonal direction, there are many possible
paths of length t which lead to the site ðt=2; t=2Þ, and thus
the mean minimal number of growth steps needed to arrive
at sites whose jij þ jjj ¼ t is tþ k, where k is a constant of
the order of 1. As a consequence, the standard deviation of
the length of the shortest paths is a constant independent of
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FIG. 3. The local values of the exponent ! estimated for RdðlÞ
(squares), RvðlÞ (circles), and RmaxðlÞ (triangles).
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(squares) and l ¼ 2168 (circles).
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t, and the surface near the sites ði; jÞ where jij ¼ jjj is
nearly flat and does not present KPZ characteristics. In the
horizontal or vertical directions there is only one path of
length t which leads to the sites ð�t; 0Þ or ð0;�tÞ, and thus
the mean minimal number of growth steps needed to arrive
at the sites ðt; 0Þ or ð0; tÞ is tð1þ kÞ ¼ tþ kt, where k is a
constant whose value depends on p. In this case there is no
constant upper bound on the standard deviation of the
length of the shortest paths, it can and does grow in

proportion to t1=3, and the surface near the sites ðt; 0Þ and
ð0; tÞ is a KPZ surface. The same conclusion holds for
directed percolation clusters whose p is higher than their
relevant pc. In the diagonal direction they are nearly flat (in
the middle), and in the horizontal or vertical direction they
form KPZ surfaces.

As a final remark, it should not be forgotten that in the
present case the clusters are considered at p > pc. Thus,
the fact that the percolation model has an upper critical
dimension does not imply an upper critical dimension for
KPZ surfaces.

In conclusion, the numerical results and analytic argu-
ments presented above indicate that, in percolation clusters
whose p > pc, the sites which are at a chemical distance
� l from a given site form nearly perfect circles whose
circumference roughness is of the KPZ type.
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