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We study the temperature dependence of the superconductor-insulator transition in granular superconductors.
Empirically, these systems are characterized by very broad resistance tails, which depend exponentially on the
temperature, and the normal state resistance. We model these systems by two-dimensional random resistor
percolation networks in which the resistance between two grains is governed either by Josephson junction
coupling �Cooper pair’s tunneling� or by quasiparticle tunneling. Our numerical simulations as well as an
effective medium evaluation explain the experimental results over a wide range of temperatures and resis-
tances. Using effective medium approximation we find an analytical expression for the effective resistance of
the system and the value of the critical resistance separating conducting from insulating branches.
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I. INTRODUCTION

The disorder driven superconductor-insulator transition
�SIT� in thin films has gained revived attention over the past
few years mainly because of the possibility that it represents
a quantum phase transition.1–7 Disordered superconductors
can be categorically divided into two groups, granular and
homogeneous.8 Experimentally, homogeneous samples are
found to exhibit sharp superconducting transitions and the
crossover between insulating to superconducting behavior
seems to occur at sheet resistance R�h /4e2�6.5 k�.1 On
the other hand, granular films are characterized by very
broad tails in the resistance R�T� and the transition between
the insulator and the superconductor phases seems to be
much less universal.2–7,9–11 In these samples it was found that
the temperature dependence of the sheet resistance, R�T�,
below the critical temperature, Tc, can be described by an
inverse Arrhenius law as follows:

R�T� � exp�T/T0� , �1�

where T0 is a constant.5 The R�T� curves following Eq. �1�
have been observed for a large variety of granular supercon-
ductors and over a wide range of temperatures �down to tem-
peratures below Tc /10�. A typical example of the granular
film’s microstructure is shown in Fig. 1 and a typical ex-
ample for a set of measurements7 of R�T� for quench con-
densed Pb granular films is shown in Fig. 2�a�. The latter
figure shows that the considered system can be driven
through the SIT as a function of the film’s mean thickness.

It is important to distinguish between local and global
superconductivities. When cooling the sample, each grain of
the array becomes separately and independently supercon-
ducting at the same critical temperature Tc �approximately
equal to Bardeen-Cooper-Schrieffer’s critical temperature,
Tc, in bulk samples�, for both insulating and superconducting
sides of the SIT. This is in contrast to high-Tc granular su-
perconductors in which the grains overcome to the supercon-
ducting state over some wide temperature range.12 Therefore,
the global superconductivity and SIT in the granular film is a
result of a competition between Josephson coupling and
phase fluctuations. There are two types of these fluctuations:

thermal and quantum. The latter are due to the charging en-
ergy, which pins the charge, which is quantum conjugate to
the phase. Thus, via the uncertainty principle, the phase fluc-
tuates.

Each grain is described by a condensate wave function �a
complex superconducting order parameter13,14� �i

=�� exp�i�i�. The density � of Cooper pairs on each grain is
assumed to be a constant and only the phases �i are allowed
to fluctuate. To describe these fluctuations, one typically em-
ploys a Hamiltonian15–17

Ĥ =
1

2�
ij

Eij
�c�ninj + �

ij

Vij +
EJ

2 �
i,j=i±1

�1 − cos��i − � j�	

+ �
ij

��i − � j�Xij + �
ij

hij�Xij� , �2�

where the first term is the charging energy, the third term

FIG. 1. A typical atomic force micrography photography �repro-
duced from Ref. 11� of Pb grains deposited on the insulating SiO2

plate. Each grain is individually superconducting with its own
phase. The mean size of the grain is of the order of 20 nm, while the
intergrain distance is 1 order smaller, i.e., is about 2 nm.
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describes the Josephson coupling, and the operator Vij is
needed for the description of the one-electron hopping con-
ductivity and the derivation of the Josephson coupling en-
ergy in the presence of the charging energy �for details, see
Refs. 15 and 16�. ni is the deviation from the average number
of electrons in the ith grain �an operator which is conjugate
to the relative phase �=�i−� j so that n=−i2� /�� and sat-
isfying the commutation relation ��i ,qi	=2ei or ��̂i , n̂j	
= i�ij�. The charging energy Eij

�c� includes both the short-range
�diagonal� and the off-diagonal parts. A mean-field approxi-
mation can replace the third term in Eq. �2� by
−2zEJ
cos ���i cos �i, where 
cos �� is the average order
parameter �for details, see Ref. 15�. The last two terms in the
Hamiltonian �2� represent the effects of dissipation in the
junctions by coupling the phase difference across the junc-
tion to a heat bath and the Hamiltonian of the heat bath,
respectively.16 Xij is a collective coordinate of the heat bath

describing the coupling associated with the shunt resistor
across the junction 
ij�.

By neglecting the dissipation terms in Eq. �2�, it is pos-
sible to obtain some expressions for determination of the
critical value of the Josephson coupling energy, below which
the superconducting bond becomes disconnected, as a result
of the combined effect of the thermal and the charging en-
ergy. Finally, Ref. 15 obtains a phase diagram �in terms of
Ec /EJ, where Ec is the energy of Coulomb blockade� and a
condition when two neighboring grains become “phase
locked:” �Ec /EJ�1/2 coth�EcEJ /kB

2T2�1/2=1.
We also propose a simplified version of phase dynamics

�see Refs. 18 and 19 and results of de Gennes in Ref. 20
derived in the mean-field approach�. The criterion for the two
neighboring grains to become phase locked15,18 is

zEJ � kBT + Ec, �3�

where z is a parameter of the order of the number of the
nearest-neighboring grains.18,19 That is, Eq. �3� conveniently
puts thermal and quantum fluctuations on equal footing and
just clarifies that if EJ is larger than kBT+Ec, the phase is
locked, while in the opposite case it is not locked.

In this paper we present a model based on percolation to
account for the observed temperature dependence of the re-
sistance in granular superconductors.21 Our percolation ap-
proach is based on a two-dimensional �2D� random disor-
dered array of grains; each neighboring pair represents a
superconducting junction in which transport can be achieved
either by Josephson tunneling or by quasiparticle tunneling,
depending on the intergrain coupling and temperature.19 Our
numerical simulations of such a system exhibit an
exponential-like dependence of R�T� over a large range of
temperatures which is in good agreement with recent experi-
ments. We find that the critical resistance that separates in-
sulating from superconducting branches depends on the dis-
tribution of disorder and on the nature of the percolation
network of the current trajectories.22,23

The remainder of this paper is arranged as follows. In Sec.
II, we describe our model and numerical scheme of simula-
tions as well as results of simulations. In Sec. III, we present
analytical evaluation of SIT in the framework of effective
medium approximation �EMA�, followed by a brief discus-
sion in Sec. IV.

II. MODEL AND NUMERICAL SIMULATIONS

When the film is enough thin, it breaks into a set of spa-
tially separated grains. The thinner is the film, the larger is
the mean distance between the grains. Therefore, the differ-
ent thickness of the film can be represented in our percola-
tion model by different distributions of intergrain mean dis-
tances.

If two grains are sufficiently decoupled, the resistance be-
tween two neighboring sites, i and j, is given by24–26

Rij = R0 exp�rij/r0 + �ij/kBT� , �4�

where R0=TkB / �e2	ij
0 �, 	ij

0 is a rate constant related to the
electron-phonon interaction26 �usually of the order 1012 s−1,
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FIG. 2. �Color online� �a� Experimental plots of log10 R the
sheet resistance versus temperature, T, for quench condensed
Pb films �Ref. 7� with grain sizes of the order �5–10 nm, having
different intergrain coupling. The higher curves correspond to
the thinner films, i.e., to films with larger intergrain distance
and, therefore, to the stronger disorder which is determined by 
.
�b� Theoretical plots of SIT: log10 R vs T for the systems
with different disorder strengths �see Eq. �7�	, 

=20,19,18,17,16,15,14.5,14,13.5,13,12,11,10,9 �from top to
bottom, respectively�. Squares are the results of our numerical
simulations, while the dashed lines are the plots of our analytical
prediction �12�. The sample size in simulations is 40�40 resistors,
Tc=7, �=3.25�103, z=10, and R0=T �in dimensionless units as is
defined in the text�. The coefficient �r0 /d�Ec

�0� /kB �see Eq. �8�	 was
taken in our calculations to be equal to 0.5 K.
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enabling us to assume in our further consideration that
kB /e2	ij

0 �1 and R0=T �in dimensionless units�	, rij is the
distance between the two sites, r0 is the scale over which the
wave function decays outside the grain, and �ij = �Ei+ Ej
+ Ei−Ej� /2 is the zero field activation energy, which can be
determined from physical principals. In the case of supercon-
ducting grains this is a nontrivial problem, but in general �ij
is related to the superconducting gap �ij�T� and Coulomb
energy Ec�e2 /2C �where C is capacitance and e is the elec-
tron charge�:19,27 �ij =�ij�T�+Ec,ij. Since the grains are as-
sumed to be large enough to sustain bulk superconductivity,
we assume ��T� is the same for all grains.

It is known that dissipation tends to suppress the quantum
fluctuations.16,28,29 Consequently, there can be some changes
in the phase diagram to take place in the presence of dissi-
pation in the junctions.30 Therefore, in general, Eq. �3�
should be modified accordingly. However, for simplicity, we
do not consider this effect in our paper.

According to Ambegaokar-Baratoff formula, the Joseph-
son coupling constant in Eqs. �2� and �3� can be written
as19,31–33

EJ = ����T�/Rij
�N�	tanh���T�/2kBT	 , �5�

where �=�� /4e2�6.5 /2=3.25 k� and Rij
�N�=Rij exp�

−��T� /kBT	 is the local normal resistance �local resistance at
�=0� between the grains. The Josephson energy EJ is related
to the Josephson current JJ as follows: EJ= �� /2e�JJ.

To perform numerical simulations of this model, we as-

sume that the random distance between grains is rij =2l̄ ·�ij,
where �ij is a random number taken from a uniform distribu-

tion in the range �0,1�, i.e., 0��ij �1, and l̄ is the mean
distance between metallic grains.34 Therefore the term rij /r0

can be expressed as 
�ij, where 
�2l̄ /r0 can be interpreted
as the dimensionless mean hopping distance or as the degree
of disorder35 �the lower density of the deposited grains rep-
resents larger 
�. Similarly, the charging energy, Ec, can be
expressed through the same factor 
�ij as follows:

Ec = 
2e2

4��0�d

rij

d
� � r0

d
�Ec

�0��
�ij� , �6�

where d and � are the mean size of the grains and the dielec-
tric constant, of the substrate, respectively.18,36 The value
Ec

�0�=2e2 / �4��0�d� is a mean charging energy of a single
grain, and �0.1 is the effective coefficient which was in-
voked as a result of the influence of the surrounding
grains.18,37

Finally we can rewrite expression �4� for the local net
resistor mimicking the local hopping resistance between the
grains in the convenient form as follows:

Rij = R0 exp�
̃�ij + ��T�/kBT	 , �7�

where


̃ � 
�1 + �r0/d�Ec
�0�/kBT	 . �8�

The superconducting gap ��T� is the solution of the inte-
gral equation13,31 ln���0� /��=2I���T� /T	, where I�u�
��0

���x2+u2�exp �x2+u2+1�	−1dx. For temperatures near

the critical value T�Tc, the gap ��T� can be approximated
by the analytical form13,38 ��T�=3.06kBTc�1−T /Tc�1/2.

Since the Coulomb energy can be expressed through the
parameter 
 �see Eq. �6�	, we can write a self-consistency
equation for the upper value of Rij

�N� for which Eq. �3� is
fulfilled,

RJC =
z����T�/kBT	tanh���T�/2kBT	

1 +
�r0/d�Ec

�0�/kBT

1 + �r0/d�Ec
�0�/kBT

ln�RJC/R0�
. �9�

Here RJC is the local critical parameter where the subscripts
ij have been omitted for simplicity. When Rij��=0��RJC

the neighboring ith and jth grains are Josephson coupled.
Here we have used the relation 
�ij =ln�Rij

�N� /R0� / �1
+�r0 /d�Ec

�0� /kBT	. The solution of Eq. �9� �i.e., the depen-
dence of the critical resistance RJC on T� for different
�r0 /d�Ec

�0� is shown in Fig. 3. In the case of small Ec �when
EJ /Ec→�, i.e., in the case of classical SIT�, inequality �3�
can be reduced to a simple intrinsic condition:19,32,33 Rij

�N�

�z����T� /kBT	tanh���T� / �2kBT�	.
Next we aim to evaluate the total resistance of the net-

work system. Our numerical simulations were performed
considering a 2D bond-percolating resistor network where
Rij of each resistor is zero if Eq. �3� is fulfilled, otherwise it
is given by Eq. �7�. We solve the obtained system of linear
Kirchhoff equations34,39 and calculate the total effective re-
sistance, R�T�, of the 2D network. The results are shown in
Fig. 2�b�. These results are in good agreement with the ex-
perimental data shown in Fig. 2�a�.40 From Fig. 2 we can
also see that the SIT is a result of an interplay between qua-
siparticle tunneling, which tends to turn the curves up �i.e., to
increase resistance, R, with decreasing the temperature, T,
see Eq. �7�	 and Josephson coupling mechanism, which tend
to turn curves down �i.e., to decrease the resistance, R, due to
increase the total number of the Josephson junctions, which
is proportional to superconducting gap ��T�, see Eqs.
�5�–�9�	. To qualitatively understand the behavior obtained in
our simulations �which are very similar to the experiments
�Fig. 2�	, we describe the percolation mechanism leading to

FIG. 3. �Color online� Critical resistance RJC �self-consistency
solution of Eq. �9�	 vs temperature, T for different charging energy
�r0 /d�Ec /kB=0,0.1,0.5,1 ,10 K �from top to bottom�.
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this behavior. For large 
 �strong disorder�, the current flows
along a single path of the percolation cluster which is the
path with minimal total resistance41 and the total resistance
of the path is determined by few critical �red bonds�42

resistors.41,43 The tail decrease of R in Fig. 2 can be under-
stood since when T decreases �below Tc�, RJC increases and
more critical resistors become superconductors.

It is seen that an inverse Arrhenius dependence of R�T� is
obtained over a wide range of temperatures. Our agreement
with experiments is further demonstrated in Fig. 4 which
shows the dependence of T0 �the slope of the tails, see Eq.
�1�	 as a function of the normal state resistance �resistance at
T=Tc� of the sample, RN, for both experimental and simula-
tion results.

We conclude this section by estimation of the charging
energy in SIT’s experiments1–6,9 and its role in our calcula-
tions. A simple estimation �using the formula e2 /2C and
typical grain’s sizes �20 nm� gives the values of the order
hundreds of Kelvin which is much larger than the critical
temperature Tc�7 K, and makes it not relevant to the SIT
�does not fulfill condition �3�	. This problem is already dis-
cussed in literature. For example, in Ref. 44 it was assumed
that the dielectric constant is larger than 10 leading to islands
of grains. According to Abeles et al.,36 to estimate the charg-
ing energy is not a trivial problem because of its complicated
dependence on the grain size, separation, and the dielectric
constant of the oxide coating. Using the results of Ref. 36,
we presented the charging energy in Eqs. �6�–�9� as a product
of the value usually used for Coulomb blockade estimation
Ec

�0� by a prefactor �r0 /d�, which describes the features of
the sample microstructure. So, even if Ec

�0� can be of the
order �10–102, the prefactor �r0 /d� is of the order
�10−3–10−2 and, therefore, their product �r0 /d�Ec

�0� /kB

written in Eq. �9� should be in the range 10−2–1 K. The
curves shown in Fig. 2�b� are calculated for the case
�r0 /d�Ec

�0� /kB=0.5 K. From Eq. �9� it is clear �see also Fig.
3� that the charging energy decreases the value RJC that sup-
presses the SIT. As a result the critical resistance �separating
the metal-like branches from the insulatinglike� Rcrit appears
at a smaller value compared to the case Ec=0. In order to

bring it back to consistency with the experimental data �see
Fig. 2�a�	 one needs, e.g., to increase the value of the neigh-
bors z, which requires special justification.

III. EFFECTIVE MEDIUM APPROXIMATION

For further understanding of this complex transition, we
have also calculated the total effective resistance, R, of such
a network using the symmetric self-consistency EMA.34,45

The effective resistance R of the random conductance net-
work �the local resistivities, �, of which are distributed con-
tinuously according to some distribution function f���	 can
be found as a solution of the integral equation

� f���� � − R

a� + R
�d� = 0. �10�

If � in Eq. �7� is uniformly distributed between 0 and 1, then
f���=1 /
�, and � is varied in the range R0e�/kBT��
�R0e�/kBT+
 �see Eq. �7�	,

�
R0e�/kBT

R0e
̃+�/kBT

���e−�/kBT − RJC�
1


�
� � − R

a� + R
�d�

− �
R0e�/kBT

R0e
̃+�/kBT

��RJC − �e−�/kBT�
1


�
d� = 0, �11�

where RJC is a critical resistance value determined by Eq.
�9�, a=z /2−1, and z is the number of bonds at each node of
the network. Here we split the integral into two parts in order
to take the Josephson coupling into account in accordance
with condition �9�, and have used the fact that ��=0
=� exp�−��T� /kBT	 �see Eq. �7�	. In the first integral we
calculate the cases in which � is larger than necessary for the
Josephson coupling ��RJC �i.e., when ���−RJC�=1, where
� is the Heaviside function	. In the second integral we con-
sider the opposite situation, i.e., when ��RJC−��=1. In this
case Josephson coupling exists and � in the brackets should
taken as zero ��→0�.

From Eq. �11� we can find the solution �for R0e�/kBT

�RJC�R0e�/kBT+
�

R =
1 − pc

pc

�R0e
̃pc − RJC�e�/kBT

1 − e−
̃�1−pc� , �12�

where RJC is given by Eq. �9�, and pc=1 / �1+a�=2 /z �see
also Ref. 34�.

Equation �12� can be understood qualitatively as follows:
The total resistance of the system at T�Tc �when ��T�=0	
and for large 
 is equal to R0epc
+�pcEc+��T�	/kBT �when z=4,
i.e., pc=0.5�. As discussed above, if the system is strongly
disordered, then its total resistance is determined by few
resistors42,43 along a path on the spanning cluster.26,34,35 At
T�TC some of the grains along this path have Rij��=0�
smaller than RJC and, according to Eq. �9�, these will be in
the superconducting state. Therefore this resistance, propor-
tional to RJC, should be subtracted from the total resistance:
R= �R0epc
̃−RJC�e�/kBT.

We expand Eq. �12� linearly near the critical temperature
�T�Tc�, from which we get an expression for Re linear in
terms �Tc−T� as follows:

0 10 20 30 40 50 60
0

1

2
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4

T
0

R
N

(kΩ)

FIG. 4. �Color online� The inverse slopes of the R�T� tails �T0 of
Eq. �1�	 as a function of the normal state resistance RN �Ref. 5� for
several sets of Pb granular films measurements �Ref. 5� �full
squares� and our simulation results �empty squares�. The dashed
line is our analytical prediction, Eq. �15�.
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R � R0e��T�/kBT+pc
 − �3.062z�/2Tc��Tc − T� . �13�

In the same approximation we get

ln�R/R�Tc�	 � − �3.062z�/2Tc�e−pc
�Tc − T� , �14�

where RN�R�Tc�=R0 exp�pc
� is the system resistance at
T=Tc. Note that the inverse Arrhenius law �1� follows imme-
diately from the latter expression with

T0 = �2Tc/3.062z��RN, �15�

shown in Fig. 4 in comparison to experimental and numeri-
cal results. It should be noted that the system with exponen-
tial disorder �4� behaves differently than the system with two
levels of resistivity �e.g., �=0 and �=1�.

The analytical results can be also used in order to find the
critical value of the effective resistance Rcr separating the
metal-like ��R /�T�0� and insulatorlike ��R /�T�0� behav-
iors. By taking the derivative and solving the equation
�R /�T=0, we get a self-consistency equation, which deter-
mines the critical value separating metal-like behavior �at
R�Rcr� from insulatorlike �at R�Rcr�. The value of Rcr �as
well as R, see Eq. �12�	 depends on two main factors: num-
ber of neighboring grains z and charging energy Ec. For small
Ec we get a simple expression

Rcr = z��1 − pc�/pc. �16�

IV. SUMMARY

In summary we have modeled and studied the temperature
dependence of the superconductor-insulator transition in
granular superconductors. Our numerical simulations explain
well the experimental results over a wide range of tempera-
tures and resistances. Calculations of effective medium ap-
proximation also show excellent agreement with the experi-
ments for temperatures close to Tc. These calculations also
enable us to determine the critical resistance value, separat-
ing the superconducting and insulating branches.
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