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Abstract

We introduce a contrarian opinion (CO) model in which a fraction p of contrarians within a

group holds a strong opinion opposite to the opinion held by the rest of the group. At the initial

stage, stable clusters of two opinions, A and B exist. Then we introduce contrarians which hold

a strong B opinion into the opinion A group. Through their interactions, the contrarians are able

to decrease the size of the largest A opinion cluster, and even destroy it. We see this kind of

method in operation, e.g when companies send free new products to potential customers in order

to convince them to adopt the product and influence others. We study the CO model, using two

different strategies, on both Erdös-Rényi and scale-free networks. In strategy I, the contrarians are

positioned at random. In strategy II, the contrarians are chosen to be the highest degrees nodes.

We find that for both strategies the size of the largest A cluster decreases to zero as p increases as

in a phase transition. At a critical threshold value pc the system undergoes a second-order phase

transition that belongs to the same universality class of mean field percolation. We find that even

for an Erdös-Rényi type model, where the degrees of the nodes are not so distinct, strategy II is

significantly more effctive in reducing the size of the largest A opinion cluster and, at very small

values of p, the largest A opinion cluster is destroyed.

PACS numbers: 89.75.Hc, 89.65.-s, 64.60.-i, 89.75.Da
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I. INTRODUCTION

Competition between two groups or among a larger number of groups is ubiquitous in

business and politics: the decades-long battle between the Mac and the PC in the computer

industry, between Procter & Gamble and Unilever in the personal products industry, among

all major international and local banks in the financial market, and among politicians and

interest groups in the world of governance. All competitors want to increase the number

of their supporters and thus increase their chances of success. In gathering supporters,

competitors put much effort into persuading skeptics and those opponents who may actually

be potential supporters. This kind of activity is normally modeled as a dynamic process on a

complex network in which the nodes are the agents and the links are the interactions between

agents. The goal of these models is to understand how an initially disordered configuration

can become an ordered configuration through the interaction between agents. In the context

of social science, order means agreement and disorder means disagreement [1, 2]. Most of

these models—e.g., the Sznajd model [3], the voter model [4, 5], the majority rule model

[6, 7], and the social impact model [8, 9]—are based on two-state spin systems which tend

to reduce the variability of the initial state and lead to a consensus state in which all the

agents share the same opinion. However this consensus state is not very realistic, since in

many real competitions there are always at least two groups that co-exist at the same time.

Recently a non-consensus opinion (NCO) model [10] was developed, where two opinions A

and B compete and reach a non-consensus stable state. At each time step each node adopts

the opinion of the majority in its “neighborhood,” which consists of its nearest neighbors and

itself. When there is a tie, the node does not change its state. Considering also the node’s

own opinion leads to the non-consensus state. The dynamics are such that a steady state in

which opinions A and B coexist is quickly reached. It was conjectured, and supported by

intensive simulations [10], that the NCO model in complex networks belongs to the same

universality class as percolation [10–12].

Here we test how competition strategies are affected when “contrarians” are introduced.

Contrarians are agents who hold a strong opinion that is opposition to an opinion held by the

rest of the group, and are not influenced by their opinion but can influence them. We develop

a spin-type contrarian opinion (CO) model in which contrarian agents are introduced into

the steady state of the NCO model. The goal of the contrarians is to change the opinions of
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the current supporters of the rival group [13]. We see this strategy in operation, for example,

when companies send free new products to potential customers in order to convince them

to adopt the product and encourage their friends to do the same. We can observe it also in

political campaigns when candidates “bribe” voters by offering favors. The questions we ask

in our model are as follows. Do these free products and bribes work and how? Who are the

best individuals to chose as contrarians in order to make most impact on opinion change.

In this paper we introduce, into group A, a fraction p of contrarians, which are defined to

be agents that hold a strong B opinion, who will influence those who hold the A opinion to

change their opinion to B. We study two different strategies of introducing contrarians, (I)

random choosing of contrarians, and (II) targeted. We study these strategies on two types of

networks, Erdös-Rényi (ER) [14] and scale free (SF) [15]. We find, for both strategies, that

the relative size of the largest cluster in state A undergoes a second order phase transition at

a critical fraction of contrarians pc. Moreover we find that, for both networks analyzed here,

the targeted strategy is much more efficient than the random strategy. Our results indicate

that the observed second order phase transition can be mapped into mean field percolation.

II. THE CO MODEL

In the NCO model[10], initially, a fraction f of agents with A opinions and 1 − f with

B opinions are selected at random. At each time step, each network node adopts the

majority opinion based on the opinions of its neighbors and itself. All updates are performed

simultaneously at each time step until a steady state is reached in which both opinions

coexist, which occurs for f above a critical threshold f ≡ fc.

In our CO model, the initial state is the final state of the NCO model. Above fc we

have stable clusters of both A or B opinions in a network of N agents. We choose, initially,

a fraction p of A opinion agents that are changed into B opinion agents and so become

contrarians. By contrarian we mean that, they will never change their opinion but they

can influence others. Then we use again the NCO dynamics to reach a new steady state.

In the new steady state the agents form again clusters of two opposite opinions above a

certain threshold fc that now depends on p. Because of the contrarians of type B, the A

clusters become smaller and the B clusters increase. In Fig. 1 we show a schematic plot of

the dynamics of the CO model.
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We use both random and targeted strategies to choose a fraction p of A agents that flip

into state B, and we analyze the results on ER and SF networks. In strategy I we randomly

choose a fraction p of A agents, and in strategy II we choose the top p percent of the highest

degree A agents, to become contrarians. Notice that the contrarians act as a quenched

disorder in the network [11, 16].

III. SIMULATION RESULTS

We perform simulations of the CO model in complex networks, on both ER and SF

networks. ER networks are characterized by a Poisson degree distribution with P (k) =

e−〈k〉〈k〉k/k!, where k is the degree of a node and 〈k〉 is the average degree. In SF networks

the degree distribution is given by P (k) ∼ k−λ, for kmin ≤ k ≤ kmax, where kmin is the

smallest degree, kmax is the degree cutoff and λ is the exponent characterizing the broadness

of the distribution. In all our simulations we use the natural cutoff, which is controlled by

N1/(λ−1) [17]. We performed all the simulations for 103 network realizations.

A. CO model on ER networks

We denote by S1 the size of the largest A cluster in the steady state. We study the effect

of the contrarians. In Fig. 2 we plot s1 ≡ S1/N as a function of f for different values of

p for ER networks under both random and targeted strategies. The plot shows that there

exists a critical value f ≡ fc that depends on p, below which s1 approaches zero. As p

increases, the largest cluster becomes significantly smaller as well as less robust, as can been

seen from the shift of fc to the larger value. In the inset of Fig. 2, we plot the size of the

second largest A cluster, S2, as a function of f for different values of p. S2 shows a sharp

peak characteristic of a second order phase transition, where s1 is the order parameter and

f is the control parameter. Above a certain value of p ≡ p∗, the phase transition does not

occur because, above p∗, the average connectivity of the A nodes decreases dramatically, the

networks break into small clusters and no giant component of opinion A appears. In Fig. 3

we show, for both strategies, the average degree 〈k〉 of the A opinion agents as a function

of f for different values of p. As shown in [10] for p = 0, 〈k〉 has a significant increase above

f = 0.5 where the nodes with opinion A are majority. This is because when these nodes
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are in the minority group, they have a small average connectivity since the minority group

doesn’t include high degree nodes. This process is analogous to targeted removing of the

high degree nodes. Only when they become majority nodes, close to f = 1, the original

connectivity of the full network is recovered. However, as p increases, we never reach the

original average degree of the full network because increasing p is equivalent to increasing

the quenched disorder. It is known that for ER networks the transition is lost when 〈k〉 < 1

[14]. As we can see from the plots, for p∗ ≈ 0.6 (strategy I) and p∗ ≈ 0.4 (strategy II), 〈k〉

drops below 1, and then the giant component cannot be sustained.

The loss of robustness is significantly more pronounced in the targeted strategy compared

to the random strategy, as seen in Fig. 2(c), where we plot fc as a function of p for both

strategies. From this plot we can see that the targeted strategy is significantly more efficient

to annihilate the opinion A clusters than the random strategy. For example, for p = 0.2,

the network is 25% less robust in the targeted strategy compared to the random one. The

reason is that the initial state of our model is the final state of the NCO model, which

above its threshold has clusters of nodes A of all sizes. Thus under the random strategy we

select nodes at random that are mainly in small A clusters. Under the targeted strategy the

selection of contrarians from the nodes of highest degree places them mainly in the largest

initial A cluster where they can influence more than if they were isolated in smaller clusters,

as in the random strategy. The high degree nodes shorten the distances between all the

pairs of nodes in a cluster, which allows them to interact more easily. Also, because they

have many neighbors, they can influence the opinions of other A nodes more efficiently.

In order to verify the above arguments, we compute, for our initial condition (p = 0)

before adding the contrarians, the degree distribution of nodes A inside and outside the

largest cluster. In Fig. 4(a) we plot the degree distributions P (k) of A nodes inside and

outside the largest cluster for three different values of f above the threshold of the NCO

model. Notice that the nodes outside the largest cluster have a degree distribution with

a high probability of low connectivity. The probability of low connectivity increases as f

increases, and thus under a targeted strategy the nodes in those small clusters are almost

never designated as contrarians. Thus nodes in the largest component are more likely to be

selected under a targeted strategy than under a random one.

In order to further test our assumption, we compute the fraction F (k), defined as the

ratio of the number of nodes with degree k in the largest A cluster and the total number of
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nodes in all the A clusters with the same degree. When F (k) → 1, all the nodes with degree

k are in the largest A cluster. In Fig. 4(b), we plot F (k) as a function of k for different

values of f . As k increases, we see that F (k) → 1 is faster for increasing f because the

larger f is, the larger S1 will be. Thus the highest degree nodes belong to the largest cluster

and the lower degree nodes are less likely to be in the largest cluster. This explains why a

targeted strategy is significantly more efficient than a random one.

Because p is our main parameter, we next investigate the behavior of the system as a

function of p for different values of f . In Fig. 5 we plot s1 as a function of p for fixed f

for ER networks under both strategies. From the plot we can see that S1 is more robust

as f is larger, and the behavior of the curve is again characteristic of a second order phase

transition. However this curve seems to be smoother than the transition found above (see

Fig. 2) with f as the control parameter.

In the inset of Fig. 5 (a) we plot the first derivative of s1 with respect to p for two

different system sizes for f = 0.4. We can see a jump that becomes sharper as the system

size increases. We find the same behavior for other values of f above the threshold. In

Figs. 6 (a) and 6 (b) we show S2 and the first derivative of s1 with respect to p for N = 105

and for different values of f . We find that the peak of S2 and the jump of the derivative

of s1 occurs at the same value of p. This behavior is characteristic of a second order phase

transition, where the peak of S2 indicates the position of the threshold pc. In Fig. 6(c) we

plot the critical threshold pc as a function of f for both strategies. Comparing the two

strategies for the same value of f , strategy II always has the smaller pc. This demonstrates

again that strategy II is better because a very small fraction of p is enough to destroy the

A opinion clusters.

Next, we present results indicating that the CO model is in the same universality class

as regular percolation. Percolation in random networks (e.g, ER)[11, 12, 18] predicts that

at criticality the cluster size distribution of finite clusters ns ∼ s−τ with τ = 2.5. In Fig. 7

we plot ns for both random and targeted strategies as a function of s for finite A clusters at

criticality. As we can see for both strategies, τ ≈ 2.5. Moreover, from S2 we calculate the

exponent γ, which represents how the mean finite size diverges with distance to criticality

(not shown here), from which we obtain γ ≈ 1, as in mean field percolation. The values of

the two exponents we obtain strongly indicate that our CO model in ER networks is in the

same universality class as mean field percolation in complex networks below p∗ [19].
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B. CO model on SF networks

Many real social networks are not ER, but instead possess a SF degree distribution. It is

well known that dynamic processes in SF networks propagate significantly more efficiently

[20–25] than in ER networks. For SF networks we find that the system also undergoes a

second order phase transition as in ER networks with mean field exponents (not shown

here).

In Fig. 8 (a) we plot fc as a function of p for SF networks with λ = 3.5. For a certain value

of p, when f < fc, we lose the largest A cluster. Thus the larger the value of fc, the less robust

the networks. From the plot, we find that for all values of p, strategy II has much larger fc

than strategy I. This shows that SF networks are significantly less robust under strategy II

than under strategy I, which shows that for SF networks, strategy II is significantly more

efficient compared to strategy I. To further test our conclusion, in Fig. 8 (b), we plot pc as a

function of f for the same SF networks. As pc is the minimum concentration of contrarians

needed to destroy the largest A cluster, thus for the same initial condition, the networks

are less robust with smaller pc than larger one. As shown in Fig. 8(b), for the same value

of f , pc under strategy II is always significantly smaller than under strategy I. This result

again support our former conclusion that for SF networks, strategy II is more efficient than

strategy I. As mentioned above, this is because the targeted strategy sends most of the

contrarians into the largest A cluster. In order to test that, in Fig. 9 we plot F (k) as a

function of k for SF networks. As we can see from Fig. 9, almost all of the high degree nodes

(k & 10) belong to the largest A cluster. This behavior is more pronounced as f increases

because S1 increases with f .

C. Comparison between ER and SF networks

If we compare all our results between ER and SF networks, we find that both strategies

are more efficient for SF networks. For example, when we compare Fig. 9 (a) with Fig. 2 (c)

we see that for all the values of p, fc is larger for SF networks than for ER networks for both

strategies. The main difference between ER and SF networks is that SF networks possess

larger hubs than ER networks, and thus it is more efficient to destroy the largest A cluster.

We also find that the targeted strategy is more efficient in SF than in ER networks due to
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the presence of these large hubs. For example, when p = 0.1, the SF network is 64% less

robust under the targeted strategy than under the random strategy. In ER networks, for

the same value of p, the robustness of the networks decreases only by 17%. If we compare

Fig. 4 (b) with Fig. 9 we see that higher degree nodes are more likely to belong to the largest

cluster in SF networks than in ER networks, since F (k) → 1 faster in SF networks compared

to ER networks.

D. Minority vs Majority

When two groups compete, either group can use both random and targeted strategies

to influence the other group. Will the impact of these strategies differ if the group using

them is in the majority, as opposed to being in the minority? Because the largest majority

cluster will have a larger average degree than the largest minority cluster, we assume it will

be harder to change the opinion of the majority than the minority for p < pc. In order to

quantitatively understand the effect of contrarians in both a minority group and a majority

group, we compute the relative change of the size of the largest minority and majority

clusters, ∆S1, given by

∆S1 = (S initial
1 − Sfinal

1 )/S initial
1 ,

where Sfinal
1 is the size of the largest A cluster in our final steady state and S initial

1 is the

cluster before adding the contrarians. Notice that f < 0.5 (f > 0.5) means that the A agents

are minority (majority). In Fig. 10 we plot ∆S1 as a function of p for f = 0.45 (minority)

and f = 0.55 (majority) under both strategies for both ER and SF networks. From the

plots we can see that below pc (marked by arrows in the plots), ∆S1 is larger for minority

than for majority for the same value of p, under both strategies I and II, and for the two

networks used here, ER and SF. Thus, as argued above, the minority groups are easier to

convince than the majority groups. Moreover, this phenomenon is more pronounced under

the targeted strategy than under the random. In the inset of Fig. 10 we plot R, which is the

ratio between ∆S1 of minority and ∆S1 of majority, as a function of p. As we can see for the

ER network, the contrarians under a targeted strategy are twice more effective when they

are in the minority group than when they are in the majority group, while under a random

strategy they are approximately 1.5 times more effective. We can see a similar but more

significant tendency in SF networks. This agrees with empirical fact, where majority groups
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always have more power than minority groups, and thus it is easier for a majority group

to change the opinion of a minority group. We conclude that our model seems to mimic

well the two-group competition in the real world, and that it also reveals some underlying

complex phenomena associated with the process.

IV. CONCLUSIONS

In introducing contrarians into a system, we have used two strategies: (i) random and (ii)

targeted. Our contrarians hold a strong B opinion and the system has two stable opinion

A clusters and opinion B clusters. We find that, for both strategies, the size of the largest

A opinion cluster shrinks, as in a phase transition phenomena. As the concentration of

contrarians increases, the largest A cluster becomes smaller and smaller until it reaches zero

at a critical concentration pc. Above pc, the largest A cluster disappears. Our results show

that the system undergoes a second order phase transition for both control parameters f

and p, behavior that resembles mean field percolation. We also find that, for both ER and

SF networks, the targeted strategy is more efficient than the random strategy, because the

targeted strategy always sends more contrarians into the largest cluster than the random.

Both strategies effect more the minority group and much less the majority group. Note

that since SF networks have hubs, both strategies work better in SF networks than in ER

networks. Based on our results, we can answer the questions we raise in the introduction.

Free products and favors (“bribes”) do effectively attract more supporters, but the most

effective strategy is to target those potential supporters with the most connections and offer

the free products and favors to them.
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[25] M. Boguñá and D. Krioukov, Phys. Rev. Lett. 102, 058701 (2009).

11

http://arxiv.org/abs/0803.2453


FIG. 1: Schematic plot of the dynamics of the CO model showing the approach to a stable state

on a network with N = 9 nodes. (a) At t = 0, we have a stable state where opinion A (open

circle) and opinion B (filled circle) coexist. (b) At t = 1, we change node 1 into a contrarian (filled

square), which will hold B opinion. Node 2 is now in the local minority opinion while the remaining

nodes are not. Notice that node 1 is a contrarian and even if he is in the local minority he does

not change his opinion. At the end of this simulation step, node 2 is converted into B opinion. (c)

At t = 2, node 3 is in the local minority opinion and therefore will be converted into B opinion.

(d) At t = 3, the system reaches a stable state where the system breaks into four disconnected

clusters, one of them composed of six B nodes and the other three with one A node.
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FIG. 2: Plot of s1 as a function of f for different values of p for ER networks with 〈k〉 = 4, and

N = 105. (a) Strategy I, p = 0 (◦), 0.1 (✷) 0.2 (⋄), 0.3 (△), 0.4 (⊳), 0.5 (▽) and p = p∗ = 0.6 (⊲).

(b) Strategy II, p = 0 (◦), 0.1 (✷), 0.2 (⋄), 0.3 (△) and p = p∗ = 0.4 (⊳). In the inset we plot,

using the same symbols as in the main figure, S2 as a function of f for both strategies. (c) Plot of

fc as a function of p for strategy I (◦) and II (✷).
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FIG. 3: Plot of 〈k〉 as a function of f for different value of p for ER networks with 〈k〉 = 4, N = 105.

(a) strategy I, p = 0 (◦), 0.1 (✷) 0.2 (△), 0.3 (⊳), 0.4 (▽), 0.5 (⊲) and 0.6 (x) and (b) strategy II,

p = 0 (◦), 0.1 (✷) 0.2 (△), 0.3 (⊳) and 0.4 (▽).
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FIG. 4: (Color online) For ER network with 〈k〉 = 4 and N = 105, (a) Degree Distribution P (k)

of A nodes as a function of k in our initial configuration with different values of f , f = 0.35 (full

line), f = 0.4 (dotted line), and f = 0.45 (dashed line). In the top, we show P (k) as a function of

k of the finite A clusters, and in the bottom the same for the largest A cluster. (b) Plot of F (k)

as a function of k for different value of f , f = 0.35 (◦), 0.4 (✷) and 0.45 (⋄).
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〈k〉 = 4 and N = 105. (a) Strategy I, f = 0.35 (◦), 0.4 (✷) 0.45 (⋄) and 0.5 (△). (b) Strategy II

for f = 0.35 (◦), 0.4 (✷) and 0.45 (⋄). In the inset of (a), we plot the first derivative of s1 = S1/N

with respect to p (ds1/dp) with different system size, N = 105 (◦) and N = 106 (✷).
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FIG. 6: (Color online) Plot of S2 as a function of p (top) and ds1/dp as a function of p (bottom)

for different values of f for (a) strategy I and (b) strategy II, f = 0.35 (◦), 0.4 (✷) 0.45 (⋄) for ER

networks with 〈k〉 = 4, N = 105. We can see that in both cases the peak of S2 coincides with the

position of the jump, also indicating a second order phase transition. In (c) we plot pc as function

of f for both strategies, strategy I (◦) and strategy II (✷).
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FIG. 7: (Color online) Plot of ns as a function of s under strategy I (◦) and II (✷) for ER networks

with 〈k〉 = 4 and N = 105 at criticality p = pc. The dashed line represents a slope τ = 2.5. This

simulation were done over 105 realizations.
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FIG. 8: (Color online) Plot of (a) fc as a function of p and (b) pc as a function of f for strategy I

(◦) and II (✷) for SF networks with λ = 3.5, kmin = 2 and N = 105.
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FIG. 9: (Color online) Plot of F (k) as a function, in linear-log scale, of k for ER network with

〈k〉 = 4 and N = 105 with different value of f , f = 0.35 (◦), 0.4 (✷) 0.45 (⋄). The reason of using

linear-log scale is that for SF networks F (k) increase very fast for small value of k
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FIG. 10: (Color online) Plot of ∆S1 as a function of p for f = 0.45 (◦) and for f = 0.55 (✷) under

strategy I (left plot) and strategy II (right plot) for (a) ER networks with 〈k〉 = 4, N = 105 and

(b) SF networks with λ = 3.5, N = 105. The arrows indicate the position of p∗ above which there

is no phase transition. In the insets we show the ratio R between ∆S1 for f = 0.45 and ∆S1 for

f = 0.55 for strategy I (∗) and strategy II (x). All the simulation were done for 105 networks

realizations.
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