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Abstract Percolation theory is extensively studied in statistical physics and mathematics
with applications in diverse fields. However, the research is focused on systems with only
one type of links, connectivity links. We review a recently developed mathematical frame-
work for analyzing percolation properties of realistic scenarios of networks having links
of two types, connectivity and dependency links. This formalism was applied to study
Erdős-Rényi (ER) networks that include also dependency links. For an ER network with
average degree k̄ that is composed of dependency clusters of size s, the fraction of nodes
that belong to the giant component, P∞, is given by P∞ = ps−1[1 − exp (−k̄pP∞)]s where
1 − p is the initial fraction of randomly removed nodes. Here, we apply the formalism
to the study of random-regular (RR) networks and find a formula for the size of the gi-
ant component in the percolation process: P∞ = ps−1(1 − rk)s where r is the solution of
r = ps(rk−1 − 1)(1 − rk) + 1, and k is the degree of the nodes. These general results coin-
cide, for s = 1, with the known equations for percolation in ER and RR networks respec-
tively without dependency links. In contrast to s = 1, where the percolation transition is
second order, for s > 1 it is of first order. Comparing the percolation behavior of ER and RR
networks we find a remarkable difference regarding their resilience. We show, analytically
and numerically, that in ER networks with low connectivity degree or large dependency
clusters, removal of even a finite number (zero fraction) of the infinite network nodes will
trigger a cascade of failures that fragments the whole network. Specifically, for any given s

there exists a critical degree value, k̄min, such that an ER network with k̄ ≤ k̄min is unstable
and collapse when removing even a single node. This result is in contrast to RR networks
where such cascades and full fragmentation can be triggered only by removal of a finite
fraction of nodes in the network.
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1 Introduction

Percolation is a primary model for disordered systems which is extensively studied both in
mathematics [1–3] and in statistical physics [4–7] and have applications in diverse phenom-
ena in different disciplines ranging from porous materials [8] and branched polymers [9]
to forest fires [10] and epidemics spreading [11]. In network science [12–25], percolation
theory is particular useful in studying robustness of networks to a failure of their compo-
nents [26–29]. For a given network, when nodes are removed with probability 1 − p, or
occupied with probability p, the percolation theory explains the existence of a critical prob-
ability, pc , such that for p below pc the network is composed of isolated small clusters but
for p above pc a giant cluster, of fraction P∞ of the network, spans the entire network. The
percolation process represents a phase transition of second-order where P∞ (the order pa-
rameter) approaches continuously to zero when p approaches pc from above. The value of
pc is considered as a measure for the network robustness. When pc is smaller, the network
is more robust since more nodes have to be removed from the network in order to fragment
it completely. The results of percolation theory were useful, for example, to evaluate the
resilience of the Internet against random [26] or malicious attacks [27–31] or to develop
efficient immunization strategies [31–34].

Percolation theory assumes that the network elements are connected by one type of links,
connectivity links. However, in real systems, usually there exist two types of links, connec-
tivity links for the function of the network and dependency links which represent that the
function of given elements depend crucially on others. For example, a dependency link be-
tween node i and node j means that if node i fails node j also fails, and vice versa. Network
models containing both connectivity and dependency links were introduced recently for two
interdependent networks [35, 36] and for single networks [37, 38]. For further recent studies
of interdependent networks see Refs. [39–42].

Here, we review the general formalism for analyzing a single network composed of con-
nectivity and dependency links and the results obtained for Erdős-Rényi (ER) type connec-
tivity networks with dependency clusters. We apply here the formalism to analyze random-
regular (RR) connectivity networks with dependency clusters. We also compare between
the results of ER and RR networks and show that in the presence of dependency links, RR
networks are significantly more robust compared to ER networks. This is in contrast to the
case of no dependency links where ER are more robust than RR networks.

2 General Formalism

When nodes fail in a network containing both connectivity links and dependency clusters,
two different processes occur. (i) Connectivity links connected to the failed nodes also fail,
causing other nodes to disconnect from the network (connectivity step). (ii) A failing node
cause the failure of all the other nodes of its dependency cluster, even though they are still
connected via connectivity links (dependency step). Thus, a node that fails in the connec-
tivity step leads to the failure of its entire dependency cluster, which in turn leads to a new
connectivity step, which further leads to a dependency step and so on. Once the cascade
process is triggered it will stop only if nodes that fail in one step do not cause additional
failure in the next step.

In order to describe the network size during the cascade and, in particular, to find its
size at steady state, two functions are defined, gD(t) and gp(t), evaluating respectively the
effect of the dependency clusters and the effect of the connectivity process on the network
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at each step of the cascade. After random removal of 1 − t of the nodes, the size of the giant
component is given by gp(t) and, equivalently, the part of the network that is not dependent
on the removed nodes (and, thus, remain functional) is given by gD(t). Thus, when applying
the dependency process on a network of size x the remaining functional nodes consisting
of a fraction gD(x), which is a fraction φ = xgD(x) of the N nodes in the original network.
Similarly, applying the connectivity process on a network of size y results in a remaining
giant component consisting of a fraction gp(y) which is a fraction φ = ygp(y) of the N

nodes in the original network.
The state of the network at steady state is given, according to [38], by the two equations:

y = pgD(x) and x = pgp(y), which can be reduced to a single equation:

x = pgp(pgD(x)). (1)

Solving (1) we obtain the size of the network at the end of a cascade initiated after random
removal of 1 − p of the nodes.

This formalism is general for any network having connectivity and dependency links. In
Sect. 3 we evaluate explicitly the function gp , describing the connectivity process and in
Sect. 4 we evaluate the function gD , describing the action of the dependency links.

3 Connectivity Process

The percolation process can be solved analytically using the apparatus of generating func-
tions. We introduce the generating function of the degree distribution G0(ξ) = ∑

k P (k)ξk ,
where P (k) is the probability of a node to have k connectivity links [43–45]. Anal-
ogously, we introduce the generating function of the underlining branching processes,
G1(ξ) = G′

0(ξ)/G′
0(1). Random removal of a fraction 1 − t of nodes will change the de-

gree distribution of the remaining nodes, so the generating functions of the new distribution
are equal to the generating functions of the original distribution with the argument equal to
1 − t (1 − ξ) [43]. Thus, the fraction of nodes that belong to the giant component after the
removal of 1 − t nodes is [44, 45]:

gp(t) = 1 − G0[1 − t (1 − u)], (2)

where u = u(t) satisfies the self-consistency relation

u = G1[1 − t (1 − u)]. (3)

Equations (2) and (3) describe generally random networks having any degree distribution.
Specifically, we analyze two random network models that can be solved explicitly. In 3.1 we
consider ER networks, whose connectivity degrees are Poisson-distributed [46–48], and in
3.2 we consider RR networks, where all nodes have the same connectivity degrees k (see
Fig. 1).

3.1 Erdős-Rényi (ER) Networks

Erdős-Rényi (ER) networks are networks with a Poissonian degree distribution,

P (k′) = kk′

k′! e
−k̄ , (4)
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Fig. 1 (Color online) Connectivity networks with dependency clusters. The edges represent connectivity re-
lations, while the (blue, red and green) groups surrounded by curves represent dependency relations between
all the nodes of the same group (color). The dependency relations can be between very “far” nodes in the
connectivity network. (a) ER network with dependency clusters. (b) RR network with dependency clusters
where all nodes have same degree k = 3

where k′ is the degree of the node and k̄ is the mean degree. For ER network with average
degree k̄ the generating functions are [49],

G0(ξ) = G1(ξ) = exp[k̄(ξ − 1)]. (5)

Thus, according to (2) and (3),

gp(t) = 1 − u (6)

where u satisfies the self consistent equation

u = e−k̄t (1−u). (7)

The steady state at the end of the cascade, given in (1), becomes

x = p(1 − u)

u = e−k̄pgD(x)(1−u),
(8)

which can be reduced to a single equation for u

u = e−k̄pgD(p(1−u))(1−u). (9)

In order to present u, obtained from (9), in terms of P∞ recall that the size of the giant
component of the network at the steady state, φ∞, is given by φ∞ = xgD(x), where x is the
solution of (8). The remaining fraction of the network at the end of the cascade, P∞, out
of the initial fraction p is given by P∞ ≡ φ∞/p. Thus, we get the relation P∞p = xgD(x).
Finally, using (8) a simple equation for P∞ is obtained

P∞ = − lnu

k̄p
, (10)

where u is the solution of (9).
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3.2 Random-Regular (RR) Networks

In RR networks all nodes have the same connectivity degree k. In this case the generating
function of the degree distribution is G0(ξ) = ξk and the generating function of the un-

derlying branching process is G1(ξ) = ξk−1, thus, G0(ξ) = [G1(ξ)] k
k−1 . According to (2)

and (3)

gp(t) = 1 − u
k

k−1 , (11)

where u satisfies the self consistent equation

u = [1 + (u − 1)t]k−1. (12)

The steady state at the end of the cascading process is given by (1)

x = p(1 − u
k

k−1 )

u = [1 + (u − 1)pgD(x)]k−1.
(13)

Once system (13) is solved, the size of the giant component is given by P∞ = xgD(x)/p.

4 Dependency Process

In the general case, when dependency links exist, each node belongs to a dependency group
of size s with a probability q(s) so that the number of groups of size s is equal to q(s)N/s.
Since after random removal of 1− t of the nodes each group of size s remains functional with
a probability t s , the total number of nodes that remain functional is given by

∑∞
s=1 q(s)Nts .

Thus, we define the function gD(t) as the fraction of nodes that remain functional out of the
tN nodes that were not removed,

gD(t) ≡
∞∑

s=1

q(s)ts−1. (14)

In particular, when all dependency clusters have the same size, s,

gD(t) = t s−1. (15)

5 ER and RR Networks with Dependency Clusters of the Same Size

5.1 ER Network with Dependency Clusters of the Same Size

The percolation of an ER network with average connectivity degree k and dependency clus-
ters of size s is described by substituting (15) into (9)

u = e−k̄ps (1−u)s , (16)

where 1 − p is the initial fraction of removed nodes. The size of the giant cluster, P∞, is
given, using (16) and (10), by [38],

P∞ = ps−1[1 − exp(−k̄pP∞)]s (ER). (17)
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Fig. 2 Simulation results of the relative size of the giant component, φ∞ ≡ P∞p, versus p for ER networks
(open symbols) and RR networks ( full symbols) with connectivity degree k̄ = 5 for ER and k = 5 for RR,
compared with the theory (solid lines) as obtained from (17) for ER and from (24) for RR. For the case of
s = 1 there are no dependency clusters and the regular percolation process leads to the known second-order
phase transition. For s ≥ 2, a first order phase transition characterize the percolation process represented by
discontinuity of P∞ at pc . Both the regular second-order and the first-order percolation transitions obey (17)
for ER and (24) for RR. Note that while for s = 1 ER networks are more stable than RR networks (pc is
smaller in ER than in RR) as s increases the RR networks become more stable compared to ER

Equation (17) coincides for s = 1 (a node depends only on itself, i.e., no dependency links)
with the known Erdős-Rényi equation [46–48], P∞ = 1 − exp (−k̄pP∞), for a network
without dependency relations. Moreover, for s = 2, (17) yields the result obtained in [37]
for the case of dependency pairs. The cases of q(s) being Gaussian or Poissonian were also
studied by Bashan et al. [38].

Figure 2 shows the size of the giant cluster, φ∞ ≡ P∞p, versus the fraction of nodes, p,
remaining after an initial random removal of 1 − p, for the case of ER network with fixed
size of dependency clusters s. The case of s = 1, where each node depends only on itself,
is the known regular second order percolation transition. For any s ≥ 2, a first order phase
transition characterizes the percolation process. Both the regular and the new first order
percolation obey (17).

Next, we describe how to find analytically the percolation threshold, pc , for the case of
ER network with a fixed size s of dependency clusters [38]. Equation (16), which is the
condition for a steady state, have a trivial solution at u = 1, which corresponds, by (10), to
a complete fragmentation of the network. For large p there is another solution of 0 < u < 1,
corresponding to the existence of a giant component being a finite fraction of the network.
Therefore, the critical case corresponds to satisfying both the tangential condition for (16),

1 = k̄pssu(1 − u)s−1, (18)

as well as (16). Thus, combining (18) and (16) we obtain a closed-form expression for the
critical value, uc ,

uc = exp

(
uc − 1

suc

)

. (19)

Once uc is found, we obtain pc by substituting it into (18),

pc = [k̄suc(1 − uc)
s−1]−1/s . (20)
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Fig. 3 (Color online) Critical probability pc for (a) ER and (b) RR networks with dependency clusters of size
s, for different connectivity degree k̄: (black) squares for k̄ = 5, (red) triangles for k̄ = 8 and (blue) circles
for k̄ = 10. While for ER [Fig. 3(a)] 1 − pc drastically drops to zero (pc = 1) at smax, in RR [Fig. 3(b)]
1 − pc scale as power law, see (28), and never reaches zero

For s = 1 we obtain the known result pc = 1/k̄ of Erdős-Rényi [46–48]. Substituting
s = 2 in (19) and (20) one obtains pc

2 = 1/[2k̄uc(1 − uc)], which coincides with the exact
result found in [37].

When (20) yields a value which is equal or larger than one for pc , removal of even a finite
number of nodes from an infinite network (zero fraction) will trigger a cascade of failures
that fragments the whole network. Moreover, for any given s there is a minimal degree value,

k̄min(s) = [suc(1 − uc)
s−1]−1, (21)

such that pc for an ER network with k̄ ≤ k̄min is equal to one and the network is extremely
unstable. Similarly, for any given connectivity degree k̄ there exists smax, given by (20)
under the condition of pc = 1, such that for s > smax, the value of pc is larger than one (see
Fig. 3(a)). In Fig. 3 we plot the values of pc as a function of s for several k̄ values.

5.2 RR Network with Dependency Clusters of the Same Size s

In the case of RR network with fixed size s of dependency clusters, (13) and (15) can be
reduced to

u = [(u − 1)ps(1 − u
k

k−1 )s−1 + 1]k−1. (22)

Introducing a new variable r ≡ u
1

k−1 , (22) becomes

r = ps(rk−1 − 1)(1 − rk)s−1 + 1. (23)

The size of the giant cluster, P∞, after random removal of 1 − p of the network nodes, is
given by

P∞ = ps−1(1 − rk)s (RR). (24)

Similar to the case of ER networks, as shown in Fig. 2, the percolation process of RR
networks, given in (23, 24), represents a phase transition. For p > pc the size of the network
at the end of the cascade process, P∞, is finite, while for p < pc the network becomes
completely fragmented. The transition point is given by the tangential condition of (23)

1 = (1 − rc)r
k−2
c

[
(s − 1)krc

1 − rk
c

+ k − 1

1 − rk−1
c

]

. (25)
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Solving (25) we obtain the transition point, pc ,

ps
c = 1 − rc

(1 − rk−1
c )(1 − rk

c )s−1
. (26)

The size of the giant cluster, P∞, at pc is obtained by substituting rc into (24).
Next we show analytically that for RR networks pc is always smaller than 1. This is in

contrast to ER networks where pc can be equal or larger than 1, (see (21)). As shown in
Fig. (3), as the size of the dependency clusters, s, increases pc increases and the network
becomes more vulnerable. When the connectivity degree, k, increases the system becomes
more robust and pc becomes smaller. In order to check if RR networks can become totally
fragmented in removal of zero fraction of its nodes, namely, pc ≥ 1, we evaluate pc in the
limit of large s. For s � 1, rc is evaluated from (25)

rc|s�1 =
(

1

sk

) 1
k−1

. (27)

Substituting rc into (26) and taking s � 1 we obtain

pc|s�1 �
[

1 −
(

1 − 1

k

)(
1

sk

) 1
k−1

] 1
s

� 1 − (1 − 1/k)k
−1
k−1 s

−k
k−1 . (28)

This formula can explain the power law behavior as a function of s and the slopes seen in
Fig. 3(b). Since 0 < rc < 1 and k > 1, we obtained that the critical point of the percolation
transition pc of RR networks is always smaller than 1 for any given s.

6 Summary

The synergy between the connectivity and the dependency processes in networks having
links of two types, connectivity and dependency links, leads to cascade of failures that
change the percolation properties of the system. The new percolation laws, given by (17)
and (24) for ER and RR networks respectively, predict for both ER and RR networks a
second-order percolation transition where no dependency clusters are present and a first-
order transition for networks with dependency clusters. However, the two topologies are
dramatically different regarding their stability in the case of large dependency clusters. In
ER networks with low connectivity degree or large dependency clusters, removal of even
a finite number (zero fraction) of the network nodes may trigger a cascade of failures that
fragments the whole network. This is in contrast to RR networks where such cascades can
be triggered only by removal of a finite fraction of nodes in the network.
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