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Transport in networks with multiple sources and sinks
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Abstract – We investigate the electrical current and flow (number of parallel paths) between two
sets of n sources and n sinks in complex networks. We derive analytical formulas for the average
current and flow as a function of n. We show that for small n, increasing n improves the total
transport in the network, while for large n bottlenecks begin to form. For the case of flow, this
leads to an optimal n∗ above which the transport is less efficient. For current, the typical decrease
in the length of the connecting paths for large n compensates for the effect of the bottlenecks.
We also derive an expression for the average flow as a function of n under the common limitation
that transport takes place between specific pairs of sources and sinks.

Copyright c© EPLA, 2008

Transport processes, such as electrical current, diffu-
sion, and flow, are fundamental in physics, chemistry,
and biology. Transport properties depend critically on
the structure of the medium, and have been studied
for a large variety of geometries [1]. Of current interest
are situations where the transport occurs on a network.
For example, information is transferred over computer
or social networks, vehicles traverse transportation
networks, and electrical current flows in power-grid
networks. Therefore, understanding of mechanisms to
increase transport effectiveness is of great importance.
Transport properties usually have been investigated in

the context of transport between a single pair comprising
one source and one sink [2–8]. The quality of transport
strongly depends on the degree (number of connections)
of the source and the sink, whereas the rest of the network
serves as an approximately resistance-free substrate for the
transport process. Consequently, the transport was found
to strongly depend on the degree distribution.
In more realistic situations, transport takes place

between many nodes simultaneously. For example, in
peer-to-peer and other computer networks users exchange
files in parallel over the network links. In transportation
networks, vehicles travel between many sources and many
destinations through the network infrastructure. The
presence of many parallel transport processes on the
same underlying network leads to interactions between
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the different deliveries and a change in network efficiency.
In this article we will quantify this phenomenon analyt-
ically and numerically, and show how different network
usage leads to different behaviors. We reported some
preliminary results in [9].
We focus on the class of non-directed, non-weighted

model networks and we also study a real network. The
first model is the Erdős-Rényi (ER) network, in which
each link exists with independent small probability p. This
leads to a Poisson degree distribution [10,11]. The second
model is the scale-free (SF) network, characterized by a
broad, power law degree distribution and was recently
found to describe many natural systems [12–14]. The
ensemble of SF networks we treat is the “configuration
model”, in which node degrees are drawn from a power
law distribution (see below), and then open links are
connected [15]. We also compute the distribution of flows
in a real network, the internet [16].
We consider a transport process between two randomly

chosen, non-overlapping sets (sources and sinks) of nodes
of size n each, where 1� n�N/2, N is the total number
of nodes. We focus on three explicit forms of transport,
described below.
i) Maximum flow (henceforth denoted flow) between

the sources and sinks, when each link has unit capacity
[8,9,16–19]. For non-weighted networks the flow is equiv-
alent to the total number of disjoint paths (i.e. paths
that do not share any edge) that connect the sources and
sinks. Therefore, it quantifies any flow which does not
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deteriorate with distance, such as flow of frictionless
fluids, traffic flow and information flow in communication
networks.
ii) Electrical current in the network when the sources

are short circuited into a unit electrical potential, and
the sinks to the ground (assuming each link is a unit
resistor). Electrical current has special significance since it
also describes any general transport process in which the
transport efficiency decreases with the length of the path
(due to increase of resistance). In addition, the current is
equal to the probability of a random walker starting at
any of the sources to escape to any of the sinks [20].
iii) Maximum multi-commodity (MC) flow. Same as i),

but where the sources and sinks form ordered pairs, so
the flow is directed from a given source to a specific
sink, and not to any other sink [17]1 (here the network
is directed and the sources and sinks may overlap). This
describes direct communication between users in computer
networks, or traffic of supplies over road networks.
Our goal is to study the dependence of the total

transport on the number of sources/sinks in the three
transport forms. We denote the flow, electrical current,
and MC flow by F , I, and FMC, respectively. In the case
of a single pair, it was shown [3,9] that the transport
between a source and a sink with degrees k1 and k2 is
approximately: Fn=1(k1, k2)≈ FMCn=1(k1, k2)≈min{k1, k2}
for dense enough networks, and In=1(k1, k2)≈ c k1k2k1+k2

,
where c� 1 is a fitting parameter. These equations state
that the transport is dominated by the degrees of the
involved nodes, and the rest of the network is practically a
perfect conductor. Using the degree distribution: P (k) =
e−〈k〉〈k〉k/k! for ER networks with average degree 〈k〉, and
P (k)∼ k−γ , k�m for SF networks with degree exponent
γ and minimum degree m, we can find the distribution of
flow or current.
Do transport properties change in the case of more than

one pair? For a small number of sources/sinks n, we expect
no significant difference. The backbone of the network
remains an almost perfect conductor, but the degree k1 has
to be replaced with the total number of links emanating
from the sources, and similarly for the sinks [9]. Because
it is assumed that n is small, we neglect the possibility of
internal links inside each set. Define the sum of n degrees
z ≡∑ni=1 ki. For ER networks, PZ(z) = e−n〈k〉(n〈k〉)z/z!,
1Formally, the maximum multi-commodity flow problem is

defined as follows [17]. There are n commodities defined by the
set: (si, ti), i= 1, . . . , n, where si and ti are the source and sink of
commodity i, respectively. The flow of commodity i along the edge
(u, v) is fi(u, v). The total flow in an edge is limited by its capac-
ity
∑n
i=1 fi(u, v)� c(u, v) (c(u, v) = 1 here for all edges). The maxi-

mum multi-commodity flow maximizes
∑n
i=1

∑
w fi(si, w), where

the second sum is over all neighbors w of the source. The MC flow
problem can be recast into a linear programming problem, and thus
can be solved in polynomial time. However, in partice, only small
instances (up to about hundred nodes) could be solved using the
GLPK (http://www.gnu.org/software/glpk/) linear programming
(interior point) solver that we used. Fast approximation algorthims
exist [21], which guarantee a solution close to the optimal (however,
we used only the exact solution).

a Poisson with mean n〈k〉. For SF networks with
2< γ < 3, write P (s) for s→ 1, the generating function of
P (k) for large k, as P (s)∼ 1+A(1− s)+B(1− s)γ−1+
O ((1− s)2). Raising P (s) to the power of n yields
PZ(s)∼ 1+nA(1− s)+nB(1− s)γ−1+O

(
(1− s)2), and

thus for large z

PZ(z)∼ z−γ , z � nm. (1)

We define z1 and z2 to be the sum of degrees of the n
nodes in the sources and sinks, respectively. Using these
definitions, F =min{z1, z2}, and I = c z1z2z1+z2

. For the case
of MC flow, the pairs are independent and the total flow
is the sum of the flow of n independent pairs.
The pdfs corresponding are therefore

Φn(F ) = 2


PZ(F )∑

j�F
PZ(j)


− [PZ(F )]2, (2)

Φn(I) =
∑
z1

∑
z2

PZ(z1)PZ(z2)δ

(
I − c z1z2

z1+ z2

)
, (3)

Φn(F
MC) = Pr




 n∑
j=1

min{kj,1, kj,2}

= FMC


 , (4)

where in eq. (4) kj,1 and kj,2 are the degrees of j-th source
and sink, respectively.
For ER networks we obtain a closed form formula for

the flow pdf [9]:

Φn(F) = 2
(n〈k〉)F e−n〈k〉

F !

(
γ(F, n〈k〉)
Γ(F )

− (n〈k〉)
F e−n〈k〉

2F

)
,

(5)

where γ(a, x) and Γ(a) are the lower incomplete and
complete gamma-functions, respectively. An interesting
quantity to study in a real transport system is the total
average flow per source/sink F (n)/n= [

∑
F FΦn(F )] /n,

since it represents the overall transport efficiency of the
system. For ER networks we calculate F (n)/n using
eq. (5), and the results are compared with simulations
in fig. 1. The theoretical prediction is in good agreement
with the simulations for small values of n. For larger n,
the transport is less efficient than predicted, since inter-
actions between the paths begin to appear. Some paths
become bottlenecks [22] and cannot serve more than their
capacity. Moreover, some links are wasted as they connect
nodes within the same set. In ER networks, the prob-
ability of having no intra-set links is (1−n/N)n〈k〉 ≈
exp[−n2〈k〉/N ]. Therefore already when n≈ (N/〈k〉)1/2,
we expect some deviations, as is confirmed by our simula-
tions shown in fig. 1.
For SF networks, we approximate the sum in (2) with

an integral:

Φn(F )∼ F−γ
∫ ∞
F

F ′−γdF ′ ∼ F−(2γ−1). (6)
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Fig. 1: Optimal number of sources/sinks. Average flow per
source/sink F/(n〈k〉) vs. the number of sources/sinks n.
Symbols represent simulation results (N = 4096, 〈k〉= 8, 16;
average is taken over many realizations of the network and
many randomly chosen sets), while lines represent the theory
based on the small-n assumption (eq. (5)). For n�

√
N/〈k〉

(indicated with arrows), the flow per source/sink always
increases, as predicted by the theory. However, there is an
optimal point beyond which the flow decreases.

Fig. 2: Flow in SF networks. (a) Probability distribution of the
flow Φn(F ) vs. F , for n= 1, 3, 5, 10 (symbols), for the network
of the Internet as of 2007 [16], which is approximately scale-
free with degree exponent γ ≈ 2.5. Since F is at least mn, a
normalized power law takes the form Φn(F )∼ n2γ−2F−(2γ−1).
Thus, we divide the vertical axis by n2γ−2 to make all
curves collapse. Theoretical slope for all n’s, −(2γ− 1) =−4 is
indicated by the straight line. (b) Average flow F/〈k〉 vs. the
number of sources/sinks n for random SF networks. Simulation
results (N = 4096, γ = 2.5, m= 2), are shown in circles, the
line represents theoretical curves. For the theory we used the
upper bound for paths of lengths up to three (see main text
and appendix).

A similar result holds for the current I. This is demon-
strated in fig. 2(a) for the internet at the Autonomous
Systems (AS) level [16]. For MC flow, the minimum of
the degrees of each pair has a power law distribution with
exponent (2γ− 1). From eq. (1), the tail distribution of
the sum remains a power law with the same exponent,
and therefore also in this case Φn(F

MC)∼ [FMC]−(2γ−1).
To evaluate the transport for the regime n� 1, we use a

different approach. Let us concentrate on the case of flow
in ER networks. We condition the total flow on the length
of the path connecting a source and a sink. n2 paths of
length one (direct link between a source and a sink) are
possible, and each exists with probability p≡ 〈k〉/(N − 1).
Denoting by F� the average flow that goes through paths
of length �, we have F1 = n

2p.

Fig. 3: Transport in ER networks. (a) Average flow F/〈k〉 vs.
the number of sources/sinks n. Simulation results (N = 4096,
〈k〉= 8, 16) are shown in symbols, lines represent theoretical
curves. For the theory we used the upper bound for paths of
lengths up to three (see main text and appendix). (b) Same as
(a) for the average electrical current I (N = 1024, 〈k〉= 4, 8).

Paths of length two involve one intermediate node.
If the intermediate node i is connected to ns(i)
sources and nt(i) sinks, the flow it can channel is
nmin(i)≡min{ns(i), nt(i)}. Since each edge exists with
independent probability p, ns and nt are binomial vari-
ables with parameters (n, p). The probability for nmin to
take the value m is given by

Pnmin(m) = 2


Pb(m)

n∑
j=m

Pb(j)


− [Pb(m)]2 , (7)

where Pb(j) =
(
n
j

)
pj(1− p)n−j since ns and nt are binomi-

als. For large n and small p the binomial variable can be
approximated by a Poisson distribution, for which eq. (7)
reduces to (cf. eq. (5))

Pnmin(m) = 2
(np)me−np

m!

(
γ(m,np)

Γ(m)
− (np)

me−np

2m!

)
.

(8)
The average of nmin is 〈nmin〉=

∑n
m=0mPnmin(m). Since

there are (N − 2n) possibilities of choosing the intermedi-
ate node, F2 = (N − 2n) 〈nmin〉. Note that approximating
F ≈ F 1+F 2 becomes accurate as n→N/2, where there
are only very few intermediate nodes and thus a very small
probability for a longer path.
Paths of length three involve two intermediate nodes

and their average number is more difficult to compute.
However, by a mapping onto a matching problem we
are able to provide lower and upper bounds for F3 (see
appendix). In fig. 3(a), we plot F (n) obtained with the
upper bound, neglecting flows of higher order F4, F5, . . . ,
and find agreement with the simulations.
An interesting outcome of the above calculation is an

immediate result for the electrical current. Since all links
have unit resistance, a path of length � has total resistance
� so I = F1/1+F2/2+F3/3+ . . . . Our simulation results
agree with our theory, as shown in fig. 3(b). While it
is not in general correct that in SF networks each edge
exists with independent probability p, applying the same
approach for SF networks results in a good qualitative
agreement with the simulations —but not as good as for
ER networks (fig. 2(b)).
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Fig. 4: Transport in ER networks normalized by the number
of sources/sinks. Average flow (panel (a)) per source/sink
F/(n〈k〉), and average electrical current per source/sink
I/(n〈k〉) (panel (b)), vs. the number of sources/sinks n. Simu-
lation parameters are as in fig. 3. Note the major differ-
ence between the flow and the current in the behavior of the
transport per source/sink: while F/n decreases with n, I/n
increases.

Focusing attention on the transport per source/sink,
F/n and I/n, we observe that while the flow F/n
decreases with n, the current I/n increases (fig. 4). The
decrease in the case of the flow is intuitively clear. As more
paths become “bottlenecks”, the total number of paths
connecting the sources and sinks decreases. However, when
increasing n, the paths that exist have shorter lengths
since the probability for direct or almost direct link
between the sources and sinks is higher. While this effect
does not influence the flow, in the case of electrical current
it reduces the resistivity of the paths and increases the
total current [9]. This is a fundamental difference between
the two forms of transport, which our analysis reveals.
For MC flow, paths cannot become shorter once a pair

of a source and a sink is added, since the transport takes
place between specific pairs (see footnote 1) (fig. 5(a)).
Therefore, we expect that for some n∗, the network will
saturate and will not be able to carry any more flow. In
other words, not only FMC/n will decrease, but FMC itself
will not grow.
To develop a theory for the average MC flow in ER

networks, we look at the pairs of sources and sinks as if
they are added one at a time. As the n-th pair is added,
we assume the paths connecting the previous n− 1 pairs
remain unchanged, such that the new pair can connect
only through these network links not already in use. We
also assume the used links are randomly spread over the
network and denote the average effective degree of the
unused part as kn. Under these assumptions, the new pair
will be connected, on average, with a number of paths that
is the minimum of two degrees of average kn (see above).
Thus, the total MC flow can be approximated as

FMC(n)≈
n−1∑
n′=0

µ(kn′), (9)

where µ(k) =
∑N
j=0 2j

kje−k
j!

(
γ(j,k)
Γ(j) − k

je−k
2j!

)
is the aver-

age of the minimum of two degrees drawn from a Poisson
distribution with average k, as in eqs. (5) and (8).

Fig. 5: Multi-commodity flow in networks. (a) A schematic
illustrating the fundamental difference between flow and MC
flow with respect to path lengths. The sources are (A,B) and
the sinks are (A′, B′). While for flow any source can connect to
any sink, for MC flowAmust connect toA′ andB must connect
to B′, even at the cost of using longer paths. (b) MC flow
FMC vs. n for ER networks with N = 128 and 〈k〉= 3, 4, 5, 6.
Symbols correspond to simulations and solid lines to eqs. (9)
and (10) (calculated up to n∗, see text). Inset: for 〈k〉= 3, we
compare the simulation (circles) and theory (eqs. (9) and (10),
solid line) with the small-n approximation FMC(n) = nFMCn=1
(dashed line). Indeed, the small-n approximation overestimates
the MC flow for large n, since it does not take into account the
decrease in the average effective degree.

To complete the derivation, we need to find the average
effective degree kn. This is straightforward to calculate, if
we assume that to optimize the total flow (since we look at
maximum flow), the transport between each new pair uses
only shortest paths. Recalling that in ER networks with
average degree 〈k〉 the average shortest path is of length
logN/log〈k〉 [11], we can write a recursion equation for the
evolution of kn

kn+1 = kn−µ(kn) logN
N log kn

, k0 = 〈k〉. (10)

Evaluating (9) and (10), we find agreement with simu-
lations of the exact MC flow (see footnote 1) (fig. 5(b)).
Note also, that this formula for the MC flow is an
improvement over the result obtained with the small-n
assumption, eq. (2), as shown in the inset of fig. 5(b).
For large n such that kn is small, the new pair is no

longer guaranteed to be connected. To find the value
of n∗, above which additional sources and sinks cannot
communicate, we use the result of percolation theory that
the network becomes fragmented when the average degree
decreases below one [11]. Thus n∗ satisfies kn∗ = 1. Since
substituting kn∗ = 1 in eq. (10) does not yield a closed form
formula, we bound n∗ by assuming the number of paths
connecting the n-th pair µ(kn) satisfies 1� µ(kn)� kn.
Equation (10) splits into two inequalities

kn+1 � kn− kn logN
N log kn

,

kn+1 � kn− logN

N log kn
,

(11)
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Approximating kn+1− kn ≈ dkndn , setting kn=0 = 〈k〉 and
solving the two differential inequalities, we obtain

(log kn)
2 � (log 〈k〉)2− 2 logN

N
n,

(kn log kn− kn)� (〈k〉 log 〈k〉− 〈k〉)− logN
N
n.

(12)

Substituting kn∗ = 1, the resulting bounds for n
∗ are

log2 〈k〉
2

� n∗ · logN
N
� 〈k〉 log 〈k〉− 〈k〉+1. (13)

From (13), n∗ =O(N/ logN), i.e., the maximal number of
sources/sinks pairs that can communicate is of the order
of N/logN .
Due to the long computation time of the exact MC

flow, only small system sizes could be considered in the
simulations, thereby leading to a finite-size effect that
obscures the percolation transition in a way that the
precise point where the network saturates cannot be
observed (fig. 5(b)). The continuous increase in the MC
flow for n> n∗ in our simulations is expected since for
finite networks, even when kn < 1 some nodes are still
connected [23]. Moreover, the probability of a pair of nodes
to belong to the same small (non-giant) cluster cannot be
neglected for finite systems.
For SF networks, the degree exponent γ plays a signif-

icant role. For 2<γ < 3, there is no percolation thresh-
old [24], and we expect more sources/sinks to be able to
communicate in comparison to ER networks. For γ > 3, a
percolation threshold exists, and we expect behavior qual-
itatively similar to that of ER networks. However because
of the limitation on computation time, we leave it as a
conjecture.
In conclusion, we investigate the efficiency of trans-

port in complex networks when many sources and sinks
are communicating simultaneously. We obtain analytical
results for the total electrical current and flow when the
number of sources/sinks is very small. For a large number
of sources/sinks, we derive approximate expressions for the
total transport in ER networks by looking at the lengths of
the paths used for the transport, and identify a fundamen-
tal difference between the behavior of flow and current.
For multi-commodity flow, we calculate the mean value of
the flow in ER networks. We also argue that in scale-free
networks more sources/sinks can communicate because of
the lack of a percolation threshold.
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Fig. 6: A schematic of the bipartite network induced during the
calculation of F3 (appendix). After taking into account F1 and
F2, we discard all direct links between the sources and the sinks,
as well as all intermediate nodes which have ns = nt and thus
all of their links to the sources and sinks are exploited in F2.
This leaves us with two sets: nodes in I1 which have spare links
to the sources, and nodes in I2 which have spare links to the
sinks. Only these spare links are drawn here, as well as the links
that connect nodes in I1 to nodes in I2. Links annotated with
an arrow can carry one unit of flow, in the direction indicated,
such that F3 = 4 in this example. Note that one intermediate
node can channel more than one unit of flow, by being matched
with more than one intermediate node from the other set.

Appendix

Average number of paths of length three. – To
calculate the average number of paths of length three that
connect the sources and sinks in ER networks, we note
that these paths take the following form:

Source → IntermediateNode1
→ IntermediateNode2→ Sink. (A.1)

Since the pair of intermediate nodes can be connected
by at most one link, the flow through this pair (in that
specific direction) is either one or zero. To find out whether
the path (A.1) is available, we must first classify each
intermediate node i based on its number of links to the
sources ns(i) and to the sinks nt(i). Three classes are
possible.

1. ns(i) = nt(i). In this case all the links that connect i
to the sources and sinks are used in paths of length
two, F2 = ns(i) = nt(i), and i cannot be used for any
F� with � > 2.

2. ns(i)>nt(i). Node i uses nt(i) links in F2, and has
ns(i)−nt(i) links free to use in F�, � > 2. Thus, i can
serve as an IntermediateNode1 in the path (A.1). We
call the set of such nodes I1, and denote its size by
|I1|.

3 nt(i)>ns(i). Node i uses ns(i) links in F2, and has
nt(i)−ns(i) links free to use in F�, � > 2. Thus, i can
serve as an IntermediateNode2 in the path (A.1). We
call the set of such nodes I2, and denote its size by
|I2|.

Each node in I1 or I2 has at least one free link to use
in F3. One has only to connect as many nodes in I1
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to as many other nodes in I2, such that the number of
connections of a node in I1 will not exceed its value of
ns−nt and that the number of connections of a node in
I2 will not exceed its value of nt−ns. For a given node
in I1, denote the number of its spare links ns−nt as s1,
and define s2 similarly for a node in I2. The maximum flow
problem is thus reduced to a generalized bipartite matching
problem. This is illustrated in fig. 6. Due of symmetry,
〈|I1|〉= 〈|I2|〉 ≡ 〈|I|〉 and 〈s1〉= 〈s2〉 ≡ 〈s〉. In addition,
these quantities can be calculated. The probability for an
intermediate node to have ns >nt is

P (ns >nt) = Pb(1)Pb(0)+Pb(2)[Pb(0)+Pb(1)]+ . . .

=

1−
n∑
i=0

[Pb(i)]
2

2
= P (nt >ns). (A.2)

and therefore 〈|I1|〉= (N − 2n)P (ns >nt) = (N − 2n)×[
1−∑ni=0 [Pb(i)]2

]
/2 = 〈|I|〉. The average number of

spare links 〈s1〉= 〈s2〉= 〈s〉 is

〈s〉 = 〈s1〉=
n∑
i=1

i ·P{(ns−nt) = i, given ns >nt}

=

n∑
i=1

i · P{(ns−nt) = i}
P (ns >nt)

=
2

1−
n∑
i=0

[Pb(i)]2
·
n∑
i=1

n∑
j=i

i ·Pb(j)Pb(j− i). (A.3)

As a first approximation, we assume 〈s〉= 1, to return
to a regular bipartite matching problem. A recent theorem
for ER bipartite networks has proved that a network with
minimal degree at least 2 has a perfect matching with
high probability [25]. Therefore, a lower bound for the
matching size will be the 2-core of the bipartite network
(consisting of the nodes in I1 and I2), which is given by
x 〈|I|〉 where x= 1− e−β(1+β), and β is the solution of
β
〈k〉 = 1− e−β [26]. Since each such matching contributes
one unit of flow of length three, the total matching size
x 〈|I|〉 is our lower bound for F3. Neglecting flows of
higher orders F4, F5, . . ., we obtain a lower bound for
the average flow: F = n2p+(N − 2n) 〈nmin〉+x 〈|I|〉. This
bound becomes exact in the limit of large n, where there
are very few intermediate nodes and thus a very small
probability for a long path.
An upper bound for the flow can be obtained by

assuming that each node in the bipartite graph is able
to match (on average) the minimum between its degree
(in the bipartite network) and its number of spare links s.
This overestimation of the flow of length three happens to
compensate for neglecting flows of longer lengths, and in
most cases agrees with simulations (see fig. 3).
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