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We study the kinetics of the reaction front for diffusion-reaction systems of the form A+ B — C
which are confined to one dimension, and in which the reactants are initially separated. For the
case in which both A and B diffuse, the spatial moments of the reaction front are characterized
by a hierarchy of exponents, bounded by the exponents ¢ = 1/4 and § = 3/8 characterizing the
asymptotic time dependence of the distance £45(t) between nearest neighbor A and B particles and
the fluctuations of the midpoint m(t) between them, respectively. We argue that this behavior arises
from confinement effects and will appear in other confined systems.
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Diffusion-reaction systems of the form A + B —
C(inert) in which the reactants are initially separated in
space have been the subject of many experimental and
theoretical studies [1-13]. The behavior of the “reac-
tion front” is well understood within a “mean field” the-
ory when the dimension of the system is greater than or
equal to 2 [5,7]. When the system is confined to one di-
mension, however, the correlations in the concentration
fluctuations that arise from the confinement of the reac-
tants invalidate the “mean field” assumptions. Thus, the
question of how to describe such systems is still open.

The reaction front R(z,t) is the localized region where
the reaction takes place; it is defined as the average
number of C particles produced at position z at time
t. Most of the analytical results for the reaction front
kinetics to date are based on the mean field assump-
tion that the probability for a reaction to occur at a
given time and place is proportional to the product of
the average concentrations of the reactants [1]. This as-
sumption leads to a scaling form for the reaction front
R(z,t) ~ t=Pf(|z|/t*) with a = 1/6 and B = 2/3.

Deviations from the mean field behavior of the reac-
tion front appear in true 1D systems, due to correlations
among the fluctuations associated with the diffusive mo-
tion of the reactant species. The correlations, which give
rise to an unexpectedly complex behavior of the reaction
front, arise from the confinement of the reactants upon a
line, and may be present in other confined systems (i.e.,
quasi-one-dimensional systems and fractals).

In this paper we undertake the study of the kinetics of
the reaction front for the limiting case of true 1D systems.
We consider systems in which initially the A species is
located to the left of the origin and the B species to
the right. We assume that both species have the same
diffusion constant, and we compare our results with the
case in which one of them is static.

Though the correlations that arise from confinement
effects will be present for any nonzero reaction proba-
bility, they are maximized when the reaction probability
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is 1. In this limiting case the presence of a particle of
species A at position z precludes the possibility of find-
ing particles of species B at any position to the left of x.
‘We therefore focus on the situation in which the reaction
probability is 1. Thus, in the systems we are consider-
ing, reactions can only take place between the rightmost
A particle (RMA) and the leftmost B particle (LMB).

As the system becomes less confined, it becomes easier
for particles to walk around each other without meet-
ing. As the “thickness” of the systems goes to infinity,
the correlations become negligible and the mean field as-
sumption of uncorrelated overlapping concentrations be-
comes valid. This is what makes the mean field form of
R(z,t) valid only for systems whose dimension is d > 2,
and explains why an expression for R(z,t) in terms of the
average reactant concentrations cannot be written for 1D
systems.

To properly describe the systems we are considering,
we use the fact that the only possibility of reaction is
between the RMA and the LMB. We define the coordi-
nate m(t) to be the midpoint between the RMA and the
LMB; m(t) is closely related to the reaction front since
every time a reaction occurs, it perforce must occur at
a position given by m(t). Thus, the fluctuations in the
value of m(t) will be an important contribution to the
width of R(z,t) [14]. The midpoint m(t) may be defined
for any system, but as the confinement increases, the
connection between m(t) and the reaction front becomes
more significant.

To study the statistics of m(t), we perform Monte
Carlo simulations. The number of particles on each site
is chosen from a Poisson distribution with the same con-
centration, ¢y = 1, for both species. We consider the case
in which both reactants have the same diffusion constant
Dy = Dp = 1/2, so that each particle can move to
one of its neighbors with equal probability. At each unit
step, we move the particles sequentially keeping track
of the position of the RMA and LMB, m(t) and ¢ap;
then we check for the occurrence of reaction in the re-
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gion LMB< z <RMA. Our simulations are for times up
to 25000 steps in systems whose size was big enough to
guarantee that there are no finite size effects, averaging
over 6000-15000 configurations. We find that the mo-
ments of m(t), £(t) = (ma(t))'/9, scale with time as t°
with § =~ 3/8 independent of ¢ (see Fig. 1 for the data
for g = 2).

The result § = 3/8 can be derived from the follow-
ing scaling argument. In the absence of fluctuations, we
expect that the concentration profiles of the reactants
would be given by error functions vanishing at the ori-
gin, and, thus, in the vicinity of the origin they would
be of the form ¢(z,t) ~ x/t'/2. The fluctuations can be
described by noting that up to time ¢, only the parti-
cles within a characteristic distance £ ~ t1/2 could have
“participated” in the reaction; the actual number of A
and B particles within this distance will be given by
ni ~ t1/2 £ ¢;t'/4 with i = A, B (c; is a constant). Let
us assume that there is a local majority of A particles so
that the difference na — np scales as t1/4. This excess
of A particles will “invade” the right hand side of the
system, thus moving m(¢) to the right until they react
with enough B particles to stop their advance. This will
happen at a distance £ from the center of the reaction
front at which

tY4 s —np~ €c(:c t)dx ~ 5—2 (1)
A B o ) tl/z )
from which we obtain
€~ t3/8, 2)

In unconfined systems, these fluctuations cannot sur-
vive since the “invading particles” would be surrounded
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FIG.1. Log-log plot of &2 as a function of time for the case

in which both species diffuse (+), and for the case in which
one is static (x). Inset shows the exponent § obtained as the
slope between successive points of the curves as a function
of 1/t, from which we conclude that § ~ 0.375 when both
reactants diffuse (+) and 6§ ~ 0.25 when one is static (x).

on all sides by the other reactant; this acts as a stabilizing
effect that suppresses large fluctuations and it is weaker
in confined systems. This stabilizing effect is absent in
the systems we are considering. This provides a qual-
itative explanation for the larger width of the reaction
front in 1D systems compared with higher dimensional
systems.

Another quantity that is complementary to m(t) in the
characterization of R(z,t) is the distance £4p(t) between
the RMA and LMB. At time t, a reaction will occur at
position m(t) providing £48(t) = 0. A complete knowl-
edge of the behavior of m(t) and £4p5(t) would suffice to
determine the form of the reaction front [15]. We calcu-
lated £45(t), and found that for all g, (£% 5(¢))/9 scales
as t9, with o =~ 1/4 (Fig. 2). This result is also similar to
that found by Weiss et al. [15] for a similar quantity in
the one dimensional trapping reaction A+ B — B, where
an initially randomly distributed ensemble of Brownian
particles A diffuse in the presence of a single stationary
trap.

We performed analogous calculations for the case
where one of the reactants is static. We find numerically
that in this case the two exponents coincide: § = o =
1/4. Also, a scaling argument analogous to the case in
which both reactions diffuse leads to the result § = 1/4,
in agreement with previous results for this case [9].

Next we study the spatial moments of the reaction
front for the case in which both reactant species diffuse.
From the Monte Carlo simulations we measured the in-
tegral in time of the reaction front [which is the concen-
tration profile Co(z,t) of the inert C particles]. Using
this quantity, we can calculate the moments (|z|?)!/? of
the reaction front:

o _oJo tIR(z, t)dx
(l=[*) =2 Of(;x’ R(z,t)dz

~t1/2ad?/ 29C¢c(z, t)dx
0
~ t'Yq“l/2 = 9% (3)

Here we used the fact that the total number of reactions
per unit time decays as t~1/2 [1,3,5]. We find that the
moments indeed have a power law dependence with time
which we can write as

(|2|9)1/9 ~ to. (4)

Yet, while the distributions of both m(t) and £4p(¢)
seemed to be describable in terms of single length scales,
we notice that the moments of the reaction front do not
follow a simple scaling relation. Indeed, the small mo-
ments, i.e., as ¢ — 0, appear to approach the value
ap = 1/4, whereas the higher moments appear to ap-
proach the value ax = 3/8 (Fig. 3). In particular the
exponent of the second moment coincides with the value
(== 0.3) obtained in previous studies [5,7].

In Fig. 3 we also show the behavior in time of the suc-
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FIG. 2. Log-log plot of £% 5 as a function of time for the

case in which both species diffuse. Inset shows the exponent
o obtained as the slope between successive points of the curve
as a function of 1/¢, which shows that o ~ 0.25.

cessive slopes from pairs of points in a plot of log(|z|?)*/¢
against logt, from which we discard the possibility that
there is a trend to either of the exponents, as would have
happened in a “transient” situation, unless the transition
occurs at extraordinarily long times. Finite size effects
can also be discarded since they would cause a monotonic
decrease of a4 as a function of g instead of the monotonic
increase that is observed.

A qualitative argument for how each of the length
scales affects the reaction front can be made by noting
that when the midpoint is far from the origin, say to the
right, then there is a high probability of there being a
B particle near it. By definition of the midpoint, this
implies that there is an A particle nearby as well, thus
increasing the probability of having a reaction. Since the
large-¢ moments probe the reaction front in the region in
which reactions occur at large m, where the reaction be-
comes increasingly certain, these moments will approach
the scaling behavior of the distribution of m. On the
other hand, if the midpoint is near the origin, the rate
of reaction will be controlled solely by the distribution
of distances between the LMB and the RMA. Since the
small-g moments probe the complete distribution evenly,
and thus are dominated by the maximum of the distri-
bution at the origin, we expect that (|z|9)1/9 will scale
as £ap for ¢ — 0. This argument provides some under-
standing for the limiting behaviors for the moments of
the reaction front as ¢ — 0 and ¢ — o0, yet it is far from
explaining how the length scales “mix.”

To explain quantitatively the behavior of oy, we stud-
ied numerically the form of R(z,t). Our data suggest
that

5 R(x,t) —2_—|ul/t"/®

R(z,t) = ™ R(z,t)de ~u e (5)

where u = m/tl/ 4, Substituting this expression into Eq.
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FIG. 3. Successive values of the exponents o which char-

acterize the moments (27)'/9 of the reaction front obtained
from extrapolation to infinite times for values of ¢ ranging
from 1/4 to 10. The solid line represents the theoretical pre-
diction of Eq. (5). Inset shows ag, as a function of 1/t for
g=1/2(4), 2 (x), 4 (B), 8 ().

(3) we obtain

g<l,

1/4,
Ya = {3/8 —(1/8¢), ¢>1, (©)

where for ¢ =1
(z) ~ t/*Int.

Our results for ¢ > 1 are in very good agreement with
these theoretical predictions (see Fig. 3). However, for
q < 1 our results are slightly larger than 1/4, which is
probably due to not reaching the asymptotic limit [16].

In summary, in an attempt to find the correct descrip-
tion of the diffusion-reaction kinetics for true 1D systems,
we have introduced two quantities which are closely re-
lated to the reaction front, m(t), and £ap. We found
that when both reactants diffuse, the reaction front ap-
pears not to be describable in terms of a single charac-
teristic length, while the distributions of m and £4p are.
The presence of “multiple scales” is reflected in the g de-
pendence of the moments of the reaction front obtained
from Monte Carlo simulations; that is (|z|?) ~ t%. We
find that as ¢ — 0, ag — 1/4, whereas, as ¢ — o0,
og — 3/8. These limits coincide with the values of the
exponents that characterize the scaling of the nearest-
neighbor distribution and the midpoint distribution, re-
spectively. This situation contrasts with the case in
which one of the reactants is static, for which £45 and
the fluctuations of m(t) scale in time as t'/4 resulting in
a reaction front for which oy = 1/4 as expected [9].
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