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Abstract

We review the present status of the studies of DNA sequences using methods of statistical
physics. We present evidence, based on systematic studies of the entire GenBank database, sup-
porting the idea that the DNA sequence in genes containing noncoding regions is correlated,
and that the correlation is remarkably long range, i.e., base pairs rhousands of base pairs distant
are correlated. We do not find such a long-range correlation in the coding regions of the DNA.
We discuss the mechanisms of molecular evolution that may lead to the presence of long-range
power-law correlations in noncoding DNA and their absence in coding DNA. One such mecha-
nism is the simple repeat expansion, which recently has attracted the attention of the biological
community in conjunction with genetic diseases. We also review new tools — e.g., detrended
fluctuation analysis — that are useful for studies of complex hierarchical DNA structure. © 1998
Elsevier Science B.V. All rights reserved.
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1. Long-range power-law correlations

In recent years long-range power-law correlations have been discovered in a wide
variety of systems. Such long-range power-law correlations are a physical fact that in
turn gives rise to the increasingly appreciated “fractal geometry of nature” [1-17].
Recognizing the ubiquity of long-range power-law correlations can help us in our
efforts to understand nature, since as soon as we find power-law correlations we can
quantify them with a critical exponent. Quantification of this kind of scaling behavior
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for appatrently unrelated systems allows us to recognize similarities between different
systems, leading to underlying unifications that might otherwise have gone unnoticed.

Traditionally, investigators in many fields characterize processes by assuming that
correlations decay exponentially. However, there is one major exception: at the critical
point, the exponential decay turns into a power-law decay [18]. Many systems drive
themselves spontancously toward critical points [2-4,19].

In the following sections we will attempt to summarize some recent findings [ 20—49]
concerning the possibility that — under suitable conditions — the sequence of base pairs
or “nucleotides” in DNA also displays power-law correlations. We will also discuss
the intriguing implications of this finding for molecular evolution.

The role of genomic DNA sequences in coding for protein structure is well known
[50]. However, in the genomes of high eukaryotic organisms only a small portion of the
total genome length is used for protein coding (as low as 3% in the human genome).
The segments of the chromosomal DNA that are spliced out during the formation of
a mature mRNA are called introns (for intervening sequences). The coding sequences
are called exons (for expressive sequences).

The role of introns and intergenic sequences constituting large portions of the genome
remains unknown. Furthermore, only a few quantitative methods are currently available
for analyzing information which is possibly encrypted in the noncoding part of the
genome.

2. The “DNA walk”

One interesting question that may be asked by statistical physicists would be whether
the sequence of the nucleotides A, C, G and T behaves like a one-dimensional “‘ideal
gas”, where the fluctuations of density of certain particles obey Gaussian law, or if
there exist long-range correlations in nucleotide content (as in the vicinity of a criti-
cal point). These result in domains of all size with different nucleotide concentrations.
Such domains of various sizes were known for a long time but their origin and sta-
tistical properties remain unexplained. A natural language to describe heterogeneous
DNA structure is long-range correlation analysis, borrowed from the theory of critical
phenomena [18].

In order to study the scale-invariant long-range correlations of a DNA sequence, we
introduce a graphical representation of DNA sequences, which we term a fractal land-
scape or DNA walk [20]. For the conventional one-dimensional random walk model
[51,52], a walker moves either “up” [u(i) = +1] or “down” [u(i) = —1] one unit
length for each step i of the walk. For the case of an uncorrelated walk, the direction
of each step is independent of the previous steps. For the case of a correlated random
walk, the direction of each step depends on the history (“memory”) of the walker
[53-60].

One definition of the DNA walk is that the walker steps “up” if a pyrimidine (C or T)
occurs at position i along the DNA chain, while the walker steps “down” if a purine
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(A or G) occurs at position i. The question we asked was whether such a walk displays
only short-range correlations (as in an n-step Markov chain) or long-range correlations
(as in critical phenomena and other scale-free “fractal” phenomena). A different kind
of DNA walk was suggested by Azbel [61]. There have also been attempts to map
DNA sequence onto multi-dimensional DNA. walks [21,62].

The DNA walk allows one to visualize directly the fluctuations of the purine-pyri-
midine content in DNA sequences: Positive slopes correspond to high concentration of
pyrimidines, while negative slopes correspond to high concentration of purines. Visual
observation of DNA walks suggests that the coding sequences and intron-containing
noncoding sequences have quite different landscapes.

3. Correlations and fluctuations

An important statistical quantity characterizing any walk [51,52] is the root-mean-
square fluctuation F(/) about the average of the displacement of a quantity 4y(¢)
defined by Ay(£) = v({o+ ) — v(£p), where p(£) = Z;:, u(7). If there is no charac-
teristic length (i.e., if the correlation between u(i) and u(j) are power-law long-range
correlations), then fluctuations will also be described by a power law

F(£)~ ¢ (1)

with o # % The case o = % represents the absence of long-range correlations.

The fact that data for intron-containing and intergenic (i.e., noncoding) sequences
are linear on this double logarithmic plot confirms that F (/) ~ /*. A least-squares fit
produces a straight line with slope « substantially larger than % thus providing direct
experimental evidence for the presence of long-range correlations [20].

On the other hand, the dependence of F(/) for coding sequences is not linear on
the log-log plot: its slope undergoes a crossover from 0.5 for small # to 1 for large
/. However, if a single patch is analyzed separately, the log-log plot of F(¢) is again
a straight line with the slope close to 0.5. This suggests that within a large patch the
coding sequence is almost uncorrelated. The function F(¢) was also studied for DNA
sequences by Azbel [63].

4. Detrended fluctuation analysis (DFA)

The initial report [20] on long-range (scale-invariant) correlations only in noncoding
DNA sequences has generated contradicting responses. Some {21,22,26,27] support our
initial finding, while some [22,28,34-37,39] disagree. However, the conclusions of
Refs. [23,24] and Refs. [22,28,34-37,39] are inconsistent with one another in that Refs.
[22,39] doubt the existence of long-range correlations (even in noncoding sequences)
while Refs. [23,24,28,34-37] conclude that even coding regions display long-range
correlations (x > %). Prabhu and Claverie [28] claim that their analysis of the putative
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coding regions of the yeast chromosome III produces a wide range of exponent values,
some larger than 0.5. The source of these contradicting claims may arise from the fact
that, in addition to normal statistical fluctuations expected for analysis of rather short
sequences, coding regions typically consist of only a few lengthy regions of alternating
strand bias — and so we have nonstationarity. Hence, conventional scaling analyses
cannot be applied reliably to the entire sequence but only to subsequences.

To avoid this problem, Peng et al. [45] have recently developed a method specifically
adapted to handle problems associated with nonstationary sequences which they term
detrended fluctuation analysis (DFA). The idea of the DFA method is to compute the
dependence of the standard error of a linear interpolation of a DNA walk Fy () on
the size of the interpolation segment /. The method takes into account differences in
local nucleotide content and may be applied to the entire sequence which has lengthy
patches. In contrast with the original (/) function, which has spurious crossovers even
for / much smaller than a typical patch size, the detrended function F;(/) shows linear
behavior on the log-log plot for all length scales up to the characteristic patch size,
which is of the order of a thousand nucleotides in the coding sequences. For £ close
to the characteristic patch size the log—log plot of Fy(/) has an abrupt change in its
slope.

The DFA method clearly supports the difference between coding and noncoding
sequences, showing that the coding sequences are less correlated than noncoding se-
quences for the length scales less than 1000, which is close to characteristic patch size
in the coding regions. The DFA method recently has been used to identify the typi-
cal lengths of large patches composed of different nucleotide concentration (see Refs.
[64,65]). These patches may represent different structural elements of 3D chromo-
some organization, e.g., the DNA double helix with period 10.5bp [66] nucleosomes
about 200bp long, 30 nm fiber, looped domains of about 10°bp, and chromatin bands
[67,68] or isochores that may consist of several million nucleotides. Such hierarchi-
cal structure of several length scales may produce effective long-range power-law
correlations.

5. Systematic analysis of GenBank database

An open question in computational molecular biology is whether long-range correla-
tions are present in both coding and noncoding DNA or only in the latter. To answer
this question, Buldyrev et al. [49] recently analyzed all 33301 coding and all 29453
noncoding eukaryotic sequences — each of length larger than 512 base pairs (bp) —
in the present release of the GenBank to determine whether there is any statistically
significant distinction in their long-range correlation properties.

They find that standard fast Fourier transform (FFT) analysis indicates that coding
sequences have practically no correlations in the range from 10 to 100bp (spectral
exponent 25D = 0.00+0.04). Here f is defined through the relation S(f') ~ 1/f%,
where S( /') is the Fourier transform of the correlation function, and f is related to the
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long-range correlation exponent « by = 2x — 1 so that o = % corresponds to f =0
(white noise).

In contrast, for noncoding sequences, the average value of the spectral exponent f
is positive (0.16 £ 0.05), which unambiguously shows the presence of long-range cor-
relations. They also separately analyzed the 874 coding and 1157 noncoding sequences
which have more than 4096 bp, and found a larger region of power-law behavior. They
calculated the probability that these two data sets (coding and noncoding) were drawn
from the same distribution, and found that it is less than 107'°. They also obtained
independent confirmation of these findings using the DFA method, which is designed
to treat sequences with statistical heterogeneity such as DNA’s known mosaic structure
(“patchiness™) arising from nonstationarity of nucleotide concentration. The near-perfect
agreement between the two independent analysis methods, FFT and DFA, increases the
confidence in the reliability of the conclusion that long-range correlation properties of
coding and noncoding sequences.

From a practical viewpoint, the statistically significant difference in long-range power-
law correlations between coding and noncoding DNA regions supports the development
of gene-finding algorithms based on these distinct scaling properties. A recently reported
algorithm of this kind [46—48] is especially useful in the analysis of DNA sequences
with relatively long coding regions, such as those in yeast chromosome III.

Recently, Arneodo et al. [69] studied long-range correlation in DNA sequences us-
ing wavelet analysis. The wavelet transform can be made blind to “patchiness” of
genomic sequences. They found the existence of strong long-range correlations in
noncoding regimes, and weaker long-range correlations in coding regimes in excel-
lent agreement with [49]. More recently, they found that the correlations in coding
DNA are restricted to the third degenerate nucleotide of the codon [67], which may
be related to the presence of the isochores, i.e., long regions of high or low C+G
content [68].

6. Possible origin of long-range correlations

Long-range correlations of different length scales may develop due to different mu-
tational mechanisms. The longest correlations, on the length scales of isochores may
originate due to base-substitution mutations during replication (see Ref. [68]). Indeed,
it is known that different parts of chromosomes replicate at different stages of cell
division. The regions rich in C+G replicate earlier than those rich in A+T. On the
other hand, the concentration of C+G precursors in the cell depletes during replication.
Thus, the probability of substituting A/T for C/G is higher in those parts of the chro-
mosome that replicate earlier. These unequal mutation rates may lead to the formation
of isochores [68]. Correlations on the intermediate length scale of thousands of bp
may originate due to DNA shuffling by insertion or deletion [42,44] of transposable
elements such as LINES and SINES [70,71] or due to a mutation-duplication process
proposed by W. Li [72] (see also Ref. [73]).
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Finally, the correlations on the length scale of several hundreds of bp may evolve due
to simple-repeat expansion [74]. The distributions of simple repeats are dramatically
different in coding and noncoding DNA. In coding DNA they have an exponential
distribution; in noncoding DNA they have long tails that in many cases may be fit by
a power-law function.

The power-law distribution of simple repeats can be explained if one assumes a
random multiplicative process for the mutation of the repeat length, i.e., each mutation
leads to a change of repeat length by a random factor with a certain distribution (see
Ref. [74]). Such a process may take place due to errors in replication [75] or unequal
crossing over (see Ref. [74] and references therein). Simple-repeat expansion in the
coding regions would lead to a loss of protein functionality (as, e.g., in Huntington’s
disease [75]) and to the extinction of the organism,

Thus, the weakness of long-range correlations in coding DNA is probably related
to the coding DNA’s conservation during biological evolution. Indeed, the proteins
of bacteria and humans has many common templates, while the noncoding regions
can be totally different even for closely related species. The conservation of pro-
tein coding sequences and the weakness of correlations in the amino acid sequences
[76] are probably related to the problem of protein folding. Monte-Carlo simula-
tions of protein folding on the cubic lattice suggest that the statistical properties
of the sequences that fold into a native state resemble those of random sequences
[77].

The higher tolerance of noncoding regions to various mutations, especially to muta-
tions involving the growth of DNA length — e.g., duplication, insertion of transposable
elements, and simple repeat expansion — lead to strong long-range correlations in the
noncoding DNA. Such tolerance is a necessary condition for biological evolution, since
its main pathway is believed to be gene duplication by chromosomal rearrangements,
which does not affect coding regions [78]. However, the payoff for this tolerance is the
growth of highly correlated junk DNA.
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