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Anomalous Size Dependence of Relaxational Processes
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We consider relaxation processes that exhibit a stretched exponential behavior. We find that in those
systems, where the relaxation arises from two competing exponential processes, the size of the system
may play a dominant role. Above a crossover time t3 that depends logarithmically on the size of the
system, the relaxation changes from a stretched exponential to a simple exponential decay, where the
decay rate also depends logarithmically on the size of the system. This result is relevant to large-scale
Monte Carlo simulations and should be amenable to experimental verification in low-dimensional and
mesoscopic systems. [S0031-9007(97)02972-4]
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In recent years it has become clear that many relaxa-
tional processes in macroscopic systems can be character-
ized by a relaxation function Q�t� that exhibits a stretched
exponential behavior

Q�t� � Q�0� exp�2�t�t�b� , (1)

where 0 , b , 1. Examples include viscoelastic relaxa-
tion [1], dielectric relaxation [2], glassy relaxations [3–
5], relaxation in polymers [6,7], and long-time decay in
trapping processes [8]. Many more examples [9–13]
suggest that Eq. (1) is common to a very wide range of
phenomena and macroscopic materials.

The origin of the stretched exponential is not always
clear. In many systems it is assumed to be the result
of a competition between two exponential processes. In
some cases, e.g., trapping processes at long times, this
assumption is well established, while in others, such
as relaxation in glassy materials, this assumption has
been controversially discussed [14,15] and alternative
models have been also suggested [10,16–18]. Less is
known, both experimentally and theoretically, on the
corresponding behavior in mesoscopic systems where we
expect the relaxation to depend on the system size.

In this Letter we argue that if the stretched exponen-
tial is due to two competing exponential processes, there
exists a characteristic time t3, which depends logarithmi-
cally on the size of the system, above which there is a
crossover to an exponential decay. Thus, by varying the
size of the system this crossover time changes. This can
serve as an experimental test for identifying the origin of
the mechanism leading to stretched exponential decay.

We assume that the relaxation function of the whole
system can be represented by an integration over all
possible states n, namely,

Q�t� �
Z `

0
F�n�Q�n, t� dn . (2)

Here, F�n� is the probability that state n is occupied and
Q�n, t� is the dynamic relaxation of the nth state.

Usually, in the case of a stretched exponential behavior,
F�n� is assumed to behave as F�n� � exp�2ana�, while
Q�n, t� decays exponentially with time as Q�n, t� �
exp�2bt�ng�. A number of dynamical models that yield
a stretched exponential decay can be formulated in terms
of Eq. (2). These include the long-time behavior in the
trapping problem [8], the target problem [18], direct
energy transfer [18], hierarchically constrained dynamics
[14] and others. We now concentrate on two examples:
The first example is a particle diffusing in a d-dimensional
system with randomly distributed traps, where we are
interested in the survival probability Q�t� of a particle.
Here the state n represents a particle in a trap-free region
of linear size n; F�n� is the probability for the occurrence
of a size n trap-free region, and Q�n, t� is the survival
probability of the particle in this region [8]. The exponent
a is the dimension d of the system, and g � 2 due to the
diffusional motion. The second example is hierarchically
constrained dynamics, a model that has been proposed to
account for glassy relaxation [14]. This model assumes
that the relaxation of level n populated by spins occurs
in stages, and the constraint imposed by a faster degree of
freedom must relax before a slower degree of freedom can
relax. This implies that the time scale of relaxation in one
level is subordinated to the relaxation below. A possible
realization considered in [14] and here is a system with a
discrete series of levels where the relaxation time of level
n is tn � ng [corresponding to the exponential form of
Q�n, t� in Eq. (2)], and the weight factor of level n is
F�n� � e2an [12], corresponding to a � 1. The first
exponential in Eq. (2) is, accordingly, the probability to
occupy level n and the second exponential represents the
decay of that level.

We can evaluate the long-time behavior of the integral
in Eq. (2) using the method of steepest descent. The
main contribution to the integral arises from the maximum
of the integrand in (2), which is obtained from the
minimum of the function 2ana 2 bt�ng appearing in
the exponent. This yields that the main contribution to
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(2) comes from

n� � �gbt�aa�1��a1g�, (3)

leading to Eq. (1) with b � a��a 1 g� , 1, and t �
�a�bg�a2g�a�g��g 1 a��11g�a .

However, as we show below, these arguments are valid
only in the thermodynamic limit where the system size
is infinite. For a finite system with a finite number N
of spins (in the hierarchical constraint system) or a finite
number N of traps (in the trapping system), the relaxation
function depends explicitly on N. Since our discussion
is quite general for systems described by Eq. (2), in what
follows we refer to spins and traps in the above examples
as elements.

For a single finite system consisting of N elements, the
relaxation function Q�t� represents an average quantity
over the N elements

Q�t� �
1
N

X
	n


m�n�Q�n, t� , (4)

where the sum is over all possible states n and m�n� is
the number of elements at state n, with

P
	n
 m�n� � N .

Since the sum in (4) is over exponential functions, the
value of Q�t� will fluctuate for different sets of N. There
will be a distribution of Q�t�, and we are interested in the
typical Q�t�, which is around the peak of this distribution.

In the thermodynamic limit N °! `, all states n are
occupied, m�n��N can be identified with F�n�, and
Eq. (2) follows. For N finite, in contrast, there exists
a characteristic “maximum” state n � nmax�N�, and this
nmax should replace the upper limit (`) in Eq. (2),

Q�t� �
Z nmax

0
F�n�Q�n, t� dn . (5)

To estimate how nmax depends on N , we note that the
typical number of states n in a sample of N elements is
Z�n� � NF�n� � N exp�2ana�. States with Z�n� ø 1
will not occur in a typical system of N elements, and this
yields

nmax �
μ

ln N
a

∂1�a

. (6)

If n� ø nmax, the upper limit in (2) can be approxi-
mated by infinity and thus leads to Eq. (1). However, if
n� ¿ nmax the main contribution to Eq. (5) will not be
from the maximum of the integrand, which is outside the
range of integration, but from nmax. Thus, for n� ¿ nmax

we expect

Q�t� � Q�0�e2bt�n
g
max , (7)

where the time constant of the relaxation, n
g
max, scales as

�ln N�g�a . The crossover time from a stretched exponen-

tial [Eq. (1)] to an exponential [Eq. (7)] can be estimated
from the condition n� � nmax, from which follows

t3 �
aa
gb

μ
ln N

a

∂11g�a

. (8)

The striking point in Eq. (8) is the logarithmic depen-
dence on N , which puts t3 in the range of observable
time scales measurable in mesoscopic systems. Indeed,
the corresponding relaxation value Q�t3� scales as

Q�t3� � N2a�g , (9)

independent of the microscopic parameters a and b. In
the case of the trapping relaxation mechanism where
a � d and g � 2 we obtain

Q�t3��Q�0� � N2d�2 , (10)

Q�t3��Q�0� � N2d�2, while in the hierarchical constraint
dynamics

Q�t3��Q�0� � N21�g . (11)

It is known [8(e)] that in both examples, for an infinite
system, the stretched exponential behavior of Eq. (1) sets
in only at very long times. Thus we expect that in
the finite system, the crossover will mask the stretched-
exponential pattern.

To test our analytical approach, we performed Monte
Carlo simulations on both the trapping model and the
hierarchical constraint model. In the trapping model,
we consider one- and two-dimensional systems with a
fixed concentration c � 0.5 of randomly distributed traps
and vary the size N�c of the system. We calculated
numerically the survival probability Q�t� of a particle
as a function of t and N. In the hierarchical model
we have chosen tn � n, i.e., g � 1. We calculated
the relaxation function for system sizes varying from
N � 102 to N � 105.

As mentioned earlier, the relaxation function fluctuates
for different sets of N. For obtaining the typical
behavior of Q�t�, we have considered therefore the
“typical” average Q�t�typ � exp��ln Q�t�
�, where the
brackets denote an average over many sets of N elements
[19]. For simplicity, we shall drop the index “typ” in the
following.

Figure 1 shows 2 ln�Q�t��Q�0�� as a function of t in a
double logarithmic plot for (a) the trapping model in d �
1 and d � 2, and (b) the hierarchical constraint model,
both for several system sizes. In all cases, a crossover
from an exponent b , 1 (at small t) towards b � 1 (at
large t) can be easily recognized. The crossover time t3

shifts towards larger values when N increases.
To study the crossover behavior in a more quantitative

manner, we have plotted in Fig. 2 the local exponents b
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FIG. 1. Plot of 2 ln�Q�t��Q�0�� as a function of t in a
double logarithmic presentation for (a) the trapping model in
d � 1 and d � 2, and (b) the hierarchical constraint model,
for several system sizes. For the trapping model, the system
sizes are N � 2 3 103 (open square), 2 3 105 (open circle),
2 3 107 (open up triangle), 2 3 109 (open down triangle) in
d � 1, and N � 9 3 102 (full square), 9 3 104 (full circle),
9 3 106 (full up triangle) in d � 2. For the hierarchical model,
the system sizes are N � 102 (full square), 103 (full circle), 104

(full up triangle), 105 (full down triangle).

obtained from the local slopes of Fig. 1, as a function of
t. In both systems, for a fixed system size N, b first
decreases with t, reaches a minimum value at a certain
time that can be identified with t3, and then increases
monotonically with time towards b � 1. The figure
shows that the minimum value of b has not yet reached
its asymptotic value predicted for infinite systems, i.e.,
b � 1�3 (d � 1) and b � 1�2 (d � 2) for the trapping
system and b � 1�2 for the hierarchical system.

To show the dependence of the crossover time t3 on
the system size N we have plotted, in Fig. 3, the values of
t
a��a1g�
3 as a function of ln N . The crossover time was

obtained numerically from the position of the minima of
the curves in Fig. 2. The resulting straight lines are in full
agreement with the prediction of Eq. (8), supporting our
analytical approach.

FIG. 2. Plot of the local exponents b calculated from the
successive slopes of the corresponding curves in Figs. 1(a), for
the trapping model and 1(b) for the hierarchical model. The
horizontal dashed lines represent the corresponding asymtotic
(N °! `, t °! `) values of b.

In the following we discuss the relevance of our results
to Monte Carlo simulations and experiments. There exists
a long standing puzzle in Monte Carlo simulations of
the trapping problem in d � 2 and 3, that the predicted
stretched exponential could not be observed [8], even for
survival probabilities Q�t��Q�0� down to 10221 in d � 2
[8(b)] and 10267 in d � 3 [8(g)].

Our finding of the logarithmic dependence of Q�t� on
the system size N explains this puzzle. The Monte Carlo
simulations in d � 2 and 3 were typically performed
on 103 configurations with about 104 traps, which is
equivalent to having a single system with N � 107

traps. Using Eq. (10), we expect for N � 107 traps
Q�t3��Q�0� � 1027 in d � 2. Indeed, for times above
t3 the exponent b approaches unity as predicted by
our theory and as seen clearly in Fig. 2(a). Moreover,
for this system size b never reaches the predicted
thermodynamic value b � 0.5, the minimum value of
b is about 0.65. For d � 3, Q�t3��Q�0� � 10211 thus
for smaller survival values (t . t3) one again expects
increasing values of b approaching unity. This explains
the exponential decay found in the early Monte Carlo
simulations. Our results show that this is not an artifact
but due to the finite size of the system. Moreover, they
clearly indicate that the thermodynamic limit cannot even
be reached in one-dimensional macroscopic systems.

It would be of interest to test the above prediction experi-
mentally by preparing experimental realizations where size
effects can be controlled. Equations (8) and (10) suggest
that the behavior around the crossover can be measured ex-
perimentally. For the trapping problem in linear systems,
which has been studied experimentally [20,21], we expect
for 108 sites and concentrations of traps c between 1024

and 1022, that Q�t3��Q�0� � 1022 1023, which is a sur-
vival range that can be detected experimentally. The same
arguments are valid for the target problem and therefore a
similar crossover from stretched exponential to exponen-
tial decay is expected in relaxation experiments in low-
dimensional geometries [22]. Mesoscopic systems such

FIG. 3. Plot of t
a��a1g�
3 as a function of ln N , for (a) the

trapping model and (b) the hierarchical model. The straight
line supports Eq. (8). The crossover times t3 were obtained
from the positions of the minima of Fig. 2.
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as quantum dots, are also promising candidates for ex-
periments where the crossover can be relevant. Identify-
ing the logarithmic size dependence in experiments may
provide support to the theories claiming that the observed
stretched exponential is due to competing exponential pro-
cesses, represented by Eq. (2).
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