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We consider a ey flyer of order « that starts from a poink, on an interval[O,L] with absorbing
boundaries. We find a closed-form expression for the average number of flights the flyer takes and the total
length of the flights it travels before it is absorbed. These two quantities are equivalent to the mean first passage
times for Levy flights and Lery walks, respectively. Using fractional differential equations with a Riesz kernel,
we find exact analytical expressions for both quantities in the continuous limit. We show that numerical
solutions for the discrete My processes converge to the continuous approximations in all cases except the
case ofa—2, and the cases of,—0 andxy—L. For «>2, when the second moment of the flight length
distribution exists, our result is replaced by known results of classical diffusion. We show sasiplaced
in the vicinity of absorbing boundaries, the average total length has a minimws &f corresponding to the
Cauchy distribution. We discuss the relevance of this result to the problem of foraging, which has received
recent attention in the statistical physics literature.
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. INTRODUCTION w=a+1. 2

In the past two decades, keflights and Ley walks(see  There are several definitions of Wewalks and Ley flights,
Refs. [1-10) found numerous applications in natural sci- which differ in terms of their spatial-temporal correlations
ences. Realizations of kg flights in physical phenomena (see, e.g., Ref.10]). Here we will restrict ourselves to the
are very diverse, including fluid dynamics, dynamical sys-definition[7]. Accordingly, we assume that for g flights
tems, and statistical mechanics. the duration of each step is constant, so that velocity is pro-

In general, Ley flights and Lery walks model anomalous portional to the step length. Hence, the time of travel is pro-
diffusion, which is governed by rare but extremely largeportional to the number of steps. Consequently, fowyLe
jumps of diffusing particles. Both vy walks and Ley flights, the mean-square displacement does not exist as a
flights are characterized by broad distributions of their steffunction of time. This property impedes direct applications
lengths, for which the second moment does not existylLe of Lévy flights to physical phenomena.
walks and Ley flights of ordera<2 have distributions of In Lévy walks, walkers travel with constant velocity,
step lengths with diverging moments of oraier @ and con-  which is independent of the step length. Hence, the time of
verging moments of orden<a. Hence, the classical central travel is proportional to the total path length. Consequently,
limit theorem, which governs the behavior of the Brownianthe mean-square displacement exists as a function of time,
motion, is not applicable. According to the generalized cenput grows faster than linearly. This property makes/ye
tral limit theorem[4,11], the probability density?(x,n) of  walks applicable for modeling superdiffusion. However, the
the displacemenk of Leévy flights converges after many time evolution of Ley flights is simpler than that of hey
steps to the ey stable distribution of ordew walks. Hence, in the following we will derive our results for

Levy flights, keeping in mind that the total path length of the
" Levy flights corresponds to total time of travel in"\ye
f exp—nlggq*)coggx)dq, (1)  walks. In the continuous limit, the ‘Mg flight process is
0 described by the superdiffusion equation, which includes in-
teger first order derivative with respect to time and fractional

wherel, is the characteristic width of the distribution of a Riesz operator with respect to spatial coordindtg,12—
single step anah is the number of steps. This distribution is 16]. Here we will restrict our study to only this class of
a generalization of the Gaussian distribution, and is characg@quations. o

terized for asymptotically large displacements by the power- Note that usually anomalous diffusion is modeled by the

fractional derivatives with respect to time and usual Laplace

or Fokker—Planck operators with respect to spatial coordi-
*E-mail address: sergey@miranda.bu.edu nates[3,4,18—24. In this case, the presence of absorbing

1
P(x,n)=

ke
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boundaries can be treated in the same way as in normal difelated to the method of separation of variables first applied
fusion, since after the separation of variables, the solutiorto the partial fractional differential equation of superdiffusion
can be expressed as a series of the usual eigenfunctions iof Ref. [16].
the boundary problem for the Laplace or Fokker—Planck op- In Sec. V, we compare our analytical solutions obtained in
erator[16,21-23. the continuous limit ;— 0 with the numerical,solutions of

In the absence of boundaries, the generalized central limfhe Fredholm equations obtained for discretevy dlights.
theorem allows us to treat kg flight diffusion with the help ~ We show that fractional differential equations can serve as
of fractional differential equation§3,4,6,9,12—1b In the ~ 900d approximations for lwy flights with absorbing bound-
presence of boundaries, the validity of fractional derivative®1€S for a<2. We also show that these approximations
formalism is less clear. Note that the problem of the discret®€@K down wherr—2 and in the vicinity of the absorbing
Lévy flights is finite, since it involves the characteristic 2oundaries.

: R ; Finally, in Sec. VI, we discuss the relevance of our results
width |, of the distribution of discrete steps. Thus the prob- ' T ; , ;
lem of Levy flights in the finite domain of linear size must to the problem of biological foraging. Recently, weflights

L . . have been used to model animal foragj@g33—37 and cell
dgpenq on the rat"MZ.L/IO' The transition frqm d_|screte diffusion [38]. It has been suggestg86] that Levy flights
Levy 'f.l|ghts to the fractional differential equation qulves with &= 1 provide the optimal strategy of foraging in case of
transitionlo—0. Consequently, the total number of flights g5 g6 oo sites, if any food site can be revisited. This sug-
and total path length diverge as powerdvafSince the same  gestion was based on the optimization of foraging efficiency,
is true for the total path length of the Brownian walker, this gefined to be the inverse of the average total path length of
problem can be solved by introducing the fractional diffusiontpe flyer before the flyer is absorbed by traps randomly dis-
coefficient, the same way it is done in the usual diffusiontriputed with certain density id-dimensional space. The av-
eque}tion. We will address this point in Sec. IV. erage total path length has been approximé&Bédias a prod-

Levy flights in a slab geometry with absorbing boundariesuct of the average length of a single flight and the average
have been used to model the transmission of light througihumber of flights before the flyer is absorbed by traps. It has
cloudy atmospherd25]. Using heuristic arguments con- been showm36] that this product has a maximumat= 1, if
firmed by numerical simulations, Rg25] found the scaling the starting point of the flyex, is selected in the vicinity of
behavior of the transmission probability of a photon throughthe absorbing boundary. Here we confirm this result in the
a slab of widthL and the total geometrical path length of one-dimensional case using both an analytical expression for
transmitted and reflected light. This behavior was experimenthe average total length of flights obtained in the continuous
tally observed in Ref[26]. We analytically derive an exact limit and the numerical solution for the discretewyepro-
expression for the transmission probability in Sec. IV. cess. We show that for the casexqfin the vicinity of the

Very recently[16], the approximate expressions for the absorbing boundary, discrete and continuous solutions have
mean first passage time for both Schneider—Wyss subdiffuhe same power law asymptotic behavior, but their ampli-
sion equation[17] and superdiffusion equatiofiL3] have tudes are different. As a consequence, the continuous limit
been obtained by separation of variables. The latter case corpproximation has an additional minimumeat-2, which is
responds exactly to the kg flight problem, which we treat absent in the discrete case. This finding ingicates that the
here (see Sec. IY. The problem of Ley walks on a finite fractional differential equation approach to e flights
interval with absorbing boundaries has already been adereaks down in the vicinity of the absorbing boundary.
dressed in Refi27]. In that paper, the authors used an inte- [N Appendix A, we derive the fractional differential opera-
gral equation approach and performed the Laplace transfori®r for the Levy flight problem with absorbing boundaries. In
in the temporal domain. They found the asymptotic behavio/Appendix B, we derive exact analytical expressions for the
of the survival probability, which is related to the asymptotic 'umber of flights and the total length traveled before absorp-
behavior of the first passage time. An alternative approach t§0n, using the Sonin inversion formula for the Riesz frac-
the Lavy walk problem which employs the fractional Kram- tional equation.
ers equations can be found in REE8]. However, as far as
we know, exact expressions for the mean first passage time Il. MEAN NUMBER OF ELIGHTS
for Lévy flights and Lery walks have not been derived. ]

The structure of the paper is the following. In Secs. Il and  Consider a Ley flight that starts at point, of the interval
I, we find the mean time of travel before absorption for [O.L] with absorbing boundaries. The flyer makes indepen-
both discrete Ley flights and Lery walks as solutions of dent subsequent flights of variable random lendthsith
Fredholm integra| equations of the second k[ﬁe] with a equal probablllty in both directions. The Iength of each ﬂlght
power-law kernel truncated by a cutoff at small distahge IS taken from the power law distribution

In Sec. IV, we treat these equations in the lifgit-0 and
reduce our problem to the solution of fractional differential P(l|>r)=(g/r)%, 3
equations with Riesz kerne[8,12,24,29. These equations
were previously applied in the plane contact prob[@&® of  where the exponernt can vary between 0 and 2, ahglis the
linear creep theory and were solved using spectral relationminimal flight length, which serves as lower cutoff of the
ships with Jacoby polynomial24,31 and by the Sonin in- distribution. The probability density of the flight length is
version formula[31,32. We also show how our method is given by
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alg o([1]—1o) decays exponentially with. The probability that the flyer is
p(l)= - WT (4)  absorbed exactly on theth flight is
~ L _
where @l §/2 is a normalization constant ar@{x)=1 for x Pn= fo [(Lh = L)Pol(x)dx 9

>0 or 0 otherwise. The exponentof Refs.[35,36 is iden-

tical to a+1. Whena>2, the second moment of the flight anq thus, the average number of flights spent by the flyer on
distribution converges and the process becomes equivalent {Re interval is

normal diffusion. As soon as the flyer lands outside the in-

terval[O,L], the process is terminated. Instead of the prob- o L

ability density Eq.(4), one could use any power-law decay- (ny=> Pnnzf > [L"Po](x)dx

ing density[4,27] regularized at small distancég including n=1 0n=0

Lévy stable distributon Eg. (1) with n .

= 7l[ 2T (@)sin(mal2)], wherel (a)=[5t* te 'dt is Euler = _f [(L,—T) *Pol(x)dx.

I' function [39]. This value ofn is selected so that the 0

asymptotic behavior of Eq1) coincides with Eq(4) [4]. We (10

use a truncated power-law density for the simplicity of ana- s . .
lytical treatment, The infinite sum in Eq(10) converges, since the norm 6f,

. _ 71 . . .
We are interested in two quantities: the average number af less than one. Herelf, —T) ™ is the inverse operator with

flights before absorptiogn) and the average total distance gspec:ttr]to the ()tperat_d;atll ! anIdI IS tr|1fe unity OFerator.
(S) traveled before absorption. Note that we consider th% nee dFe’ Ope[aéor‘% ) |iaso a sefl-conjugate opera-
length of the last flight to be equal to the distance from the'o"> an o(X) = 8(x=Xo), we have
previous landing point to the boundary of the interval which (MY=[(L,—T) *h](xc) (11)
flyer crosses during its last flight. This condition makes our “ '
problem equivalent to the problem of ewalks [27] with  whereh(x) = —1 is the constant function. This equation can
the time defined to be equal to the sum of the flight lengthspe rewritten as a Fredholm integral equation of the second
Suppose that the probability density of finding aviie  kind [28] with the kernelp(x,—X;)
flyer at pointx after n flights is P,(x). Then the probability
density aftem+1 flights is given by the convolution of the L
probability densityP,.(x) and the probability density of the (n(xo))=1+ f L (NP xy)dxg. - (12)
next flight p(x) given by Eq.(4)
. Equation(12) can be interpreted as a recursive method to
_ _ determine (n(xy)). Indeed, the average total number of
Posa(y) fo PLY=X)Pa(x)dx. ® flights for t<he pr(zcess that starts»af is equal to ongcon-
tribution from the very first flight, which always takes place
Let £,(lo) be an integral operator with kernp(x—y)  plus the convolution of the average total number of flights
which is defined on a functiofi(x) of an interval[O,L] as  for the processes that start from all possible landing poipts
of the first flight inside the interval and the probability den-
i f](y)zal“/ZJL f(x) 0(ly—x|—10)dx ®) sity p(xo—X;) to land at these points after the first flight.
@ "% )o ly—x|*1 ' In general, consider a quantiQ(xo) =(={=,0;), where
d;=9(Xi_1,X;) is a function of the starting point; _; and
One can see, thar, is a self-conjugate operator with ending pointx; of theith flight, and( ) denotes the average
respect to a scalar product,§) = [§f(x)g(x)dx. It can be  overall possible processes starting at paintThen, in anal-
shown that for any continuous functiofi [g|L,fldx  ogy with the average number of flights, such a quantity must
<[1-(2M)“1[5|f|dx, where M=L/l,. The value [1  Satisfy a recursion relation
—(2/M)“] can be regarded as the norm of the operdtor L
It has a physical meaning of the survival probability, i.e., the Q(Xo):<%(xo)>+f Q(X1)p(Xo—Xxy)dx;, (13
probability for the flight that starts at the center of the inter- 0
val to stay unabsorbed, which is less than one.

The distribution aften flights is given by where(do(Xo))=J~..p(X1—X0)d(Xo,X1) dX;. Note that ifx;
is outside the intervdlO,L], the particle is absorbed by one
Pa(X)=[L0Po](X). (7) of the boundaries and the valggx,,x;) should be defined

o B _ ~according to its physical meaning for the absorbed particle.
The initial probability density of the flyer located at position Equation(13) is identical to Eq(11) with h(x)= —(qo(x)).

Xo is the Dirac delta functionPy(x) = 6(x—X). The prob- As an example of the application of E@.3), let us con-
ability that the flyer remains unabsorbed afteflights sider quantityQ(x,) to be the total flux through the right
. boundary. This flux is related to the transmission probability
J [LNPo](x)dx<[1—(2/M)*]" (8) of photons through the clo_uo[§5]. By definition, t_he flux
0 through the right boundary is equal to the probabiRtyxg)
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of the absorption of the flyer that starts at poxgtby the
absorbing boundarx=L. In this case, quantitg must be
defined asq(xq,Xq) = (X, —
sorbed by the right boundary with probabilitp,(Xg)
=(go(X0)) = S P(X1—Xg)dx4, Or after integration

[Iol(L_Xo)]a/2,0$XO<L_IO
1/2, L_|0$XO$L.

Pr(Xo) = 14)

Therefore,P,(x,) satisfies Eq(13) with (gq(Xg))=p;(Xp)
and Eq.(11) with h(xg)=—

L). The very first flight is ab-

p:(Xp). In the next section, we

PHYSICAL REVIEW E 64 041108

(lo) a—1

— -
y

if L—Io<y=<L. Analogous changes must be made in Eq.

(17).
Thus, according to Eq13), the total average path length
for the process that starts at poigf is

-y lo
T

(19

L
<S(X0)>:5(Xo)+j0 (S(x1))P(Xo—Xq)dXq (20

will apply this method to define the total path length of the ©"

flyer.

IIl. AVERAGE TOTAL PATH LENGTH TRAVELED
BY THE FLYER

The average total path length traveled by an dlyer

before absorption is equivalent to the total time spent by a
Lévy walker before absorptiofi27]. The evolution of the

probability density of Lgy walks was studiedi27] in terms

(S(X0))=—[(Ly—T) s](Xo).

This equation is identical to the E@L1) in which function
h(x) = —s(x). We will solve Egs.(12) and(20) numerically
in Sec. V.

(21

IV. THE CONTINUOUS LIMIT

Appendix A shows that fora<<2, operatorl,(lg) —Z

_of time._This app_roach leads to integral equat_ions involvingtlends to zero wheth,—0 for any functionf(x) that has
integration over time and space. Here we restrict our study tgecond derivatived”(x) for 0<x<L and has finite limits

the problem of the average total path length before absorpr(0) andf(L). It can also be shown that for such functions
tion of discrete Ley flights. This particular problem can be gnda<?2 there exists an operatf8,24,4q

solved in much simpler terms.

In the absence of the absorbing boundaries, the average

flight length with probability density(l) of Eq. (4) is given

by (|I|)=S~Z]I|p(1)dl, which is independent of the starting
point and diverges fotr=<<1. In the presence of the absorbing
boundaries, the flight starting from a pointcannot exceed
the distancey andL —y from this point to the boundaries.
One can show that the average length of a flight that starts;p_f)(y)=p

from a pointy of an interval[ly,L

jy lo  dx +fL dx
0 (Yy=x)* Jy+lo(X—y)“

. (19

—1g] is given by

s(y)=(]I( y)|>—

N fo dx _y) dx
y _w(y_x)oﬂrl ( y L(X )a+1

which converges fow>0. If a# 1, Eq.(15) reduces to

| | -1 | a—1
s(y)—z(lO - ( 0) +<LT°y) —2a|. (16
In casea=1, we have from Eq(15)
I L—
sty)= 2| L] +1in[ =) +2|. (17)
lo lo
If 0=<y<l,, Eq.(16) must be replaced by
B lo IO a1 18
s(y)= 2 -a)lloy] —© (18

or by

Do=lim 5[ L (l0)-T]. (22)

lop—0

The result of this operator acting on any such function is
defined as

f(0)
~ 5y

f(L)

S 2(L-y)*®
(23)

f sgrnx—y)f’(x)dx
2ly—x|

wheref’(x) is the first derivative of the functiof(x). This
operator is a self-conjugate operator similar to the double
differentiation operatod?/dx. It can be expressd@®,24] as

the linear combination of right and left Riemann—Liouville
fractional derivatives of the order. The difference of the
two operators

dy(lo)=lo “[La(lo) =Z]=D,

decays a$§’“ whenly,—0. Appendix A also shows that the
leading term of the operatat, is proportional to the opera-
tor of the second derivative

(24)

2

dollo) =15 "5 —zyge ol - (29

In analogy with the diffusion equation with continuous
time, we can define a superdiffusion equat{@12,13,16
based on Ley flights. Instead of the discrete process defined
by Eq.(5), one can write

IP(x,t) g
= DaPOx),

(26)
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wheret, is the duration of each flight, ang/t, is the frac-  One can verify this solution by performing contour integra-

tional analog of the diffusion coefficient. Note tHgtplays a  tion around the cuttO,L ] on the complex plane and comput-

role similar to the mean free path, angplays the role of the ing the residue of the integrand at infinity. It should be

mean collision interval. pointed out thag(x) can be expanded in a series of eigen-
The operatorD, has an orthogonal normalized set of functionsf(x)

eigenfunctions f,(x), such that D,f(x)=\,f(x), and

f(0)=f,(L)=0 [29,41. Similarly to the solution of usual * L

diffusion equation, the solution of E¢R6) can be expressed 9(Xo)=— Z )\l:lfk(xo)f fr(x)dx.

via separation of variables as a series of eigenfunctions K=t 0

% L This expansion is similar in spirit to an approximation, ob-
P(x,t)=>, e”k'g“tOfk(x)f f(y)P(y,00dy. (27) tained in Ref[16], where the exact eigenfunctions were ap-
k=1 0 proximated by sines. Although approximatifit6] correctly

. . predicts the power-law dependergiey) ~ L for the points
In Ref.[16], where the method of separation of variables forXO in the center of the interval, it differs from E(82) in the

the superdnffusmn equation on a finite interval has been flrS[Broportionality coefficient and in the behavior near absorbing
proposed, it has been assumed that the eigenvalyes boundarie§42]

asymptotically behave at larg& as N~ —(k/L)*<0 Note that fora>2 E
. . . , EQ.(26) should be replacef40] by
and that the eigenfunctiorfg(x) can be well approximated the standard diffusion equation with diffusion coefficiént

by the eigenfunctions/2/L sin(xwk/L) of the Laplace opera- =I§a/[t02(a—2)]. In this case, the average time spent by

tor with absorbing boundary conditions. Numerical studie L . ;
[42] confirm these assumptions but show that eigenfunctio%he flyer before absorption is given by the classical equation

fx and sines have different behavior near absorbing boun zr:t))(l(elg_tri( (g/;()fon)o'ri\il :;Zﬁg,agﬁfi?gﬂfﬁnEi;;;f icien? re-
i __yal2 .
anle_'s, r)amaelsgk(ﬁ)thx asx?O. fh One can argue that the expressi@2) may yield the av-
1aving defined the properties of the operaly, we can erage number of flights taken by the discretevy dlight
derive the closed form expression for the average time sperE)trOCess in the limit of,—0. Indeed, according to E¢24)
by the continuous Ly flight process on the interval. Formal 0 '

substitution of Eq(22) into Eq. (11) yields Lo(l0)—T=18[D,+dy(1)], (33)

t t
(t=to(n)= [ D, *h](X)= 74 d(Xo), (28)  where operatod,(ly)—0, asl,—0. Formally expanding
| I
0 0 (£,—7) 'in powers ofd,, we obtain
where functiong(x) satisfies the equation
[L,—ZI] =ly%D, ' -D D+ ...) (39
D, ag(x)=h(x)=-1. (29
and thus
Note thatg(x) has to satisfy boundary conditiogg0)=0,
g(L)=0. Otherwise, according to E@23), the right-hand —|-e -1 4 35
side of Eq.(29) would contain singularities. In the general (M =10 g% =[P dug]X0) F . - }- 39

case, the equation Note that expansio35) is formal and may not converge.

Lsgriy—x)f' (y)dy We will test this assumption numerically in Sec. V. In order
pf =h(x) (30)  to distinguish the average number of flights for the discrete
0 2ly—x|« process{n), from the continuous limit approximation, we

will denote the latter by ,(x)

with absorbing boundary conditions

f(0)=f(L)=0 (31) Na(Xo)=lo “9(X0) =

belongs to a known class of generalized Abel integral equa- . " N
tions with Riesz fractional kernef24,29-31. It can be _sin(mal2)M (z-2%)""
shown[29,3]] that such an equation with boundary condi- mal2
tions (31) has a unique solution which can be obtained via
spectral relationships for Jacobi polynomig®t,31 or by  wherez=x,/L, M=L/l,,.
the Sonin inversion formulg31,32 (see Appendix B Simi- Analogously, we will denote the continuous limit approxi-
lar inversion formulas are given in Ref29]. In the case mation for the average total path length 8y. In the con-
h(x)=—1, the solution can be expressed in elementantinuous limit, Eq.(21) should be replaced by E¢30) with
functions f(y)=S,.(y), h(x)=I, “s(x), and absorbing boundary con-
) ditions (31). In this case(see Appendix B the Sonin for-
2 sin(mal2) _ al2 mula leads to an expression containing hypergeometric func-
9(x) = —————[(L=x)x]** (32 ons

sin(al2) al2

mal2

(L—Xo)Xo
|2
0

: (36)
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L(2—a)

bo(2)+ P (1-2)
2(1—a) 1-4

a a
2'2

a—1ai| TE) 28
2LM“™*sin > (z—2°)2

* m(a—1) ' 37)

Sa(Xo) =
a(a+2)B

whereB(a,b)=T1"(a)I'(b)/T"(a+b) is EulerB function

PHYSICAL REVIEW E 64 041108

fxo (y)d Fal a « lXO
a — ___+ —_—
O<Poy y xo\z 27 272 L
Plxo)= =] — T2 a
d “plZ =
f0¢0(Y) y 28(2,2)
(39

Note that the probability of the absorption by the left bound-
ary, P(Xg)=P,(L—X%g)=1-P,(Xy). For x,—0, the
asymptotic behavior of P,(xg) is given by P.(Xg)
~(Xo /L)% which is in complete agreement with the result

of Ref.[25] for the transmission probability of the photons
through the clouds of depth.

a a o a
wa(z)=F(2——,—,—+2,z 2z "1
2°2°2 V. NUMERICAL SOLUTION
. ) ) The goal of this section is to treat E(L2) and Eq.(20)
andF is the hypergeometric functioi39] numerically and to compare the results with the continuous
limit solutions Eq.(36) and Eq.(37). To perform numerical
w n integration of Eqs(12) and(20), we replace the integration
F(a,b,c,x)= I'(c) E T'(n+a)I'(n+b)x _ by summation and the kernp(x—y) by the matrixA;;, 0
I'@r(b) i=o I'(n+1)I'(n+c) <i<M, such thatA;;=0 and
. o 1) 1 1 o
In casea=1, corresponding to the Cauchy distribution, the Aj=5| ————— . i#]. (40)
hypergeometric functiow,(z) can be expressed in elemen- 2[li=jl* (i=jl+D*~

tary functions (z)=3/4[ w/2+sin Y(2z—1)—2\z—7?]
and Eq.(37) yields S;(xo) = 2L/\z— Z2InM/ 7+ O(1) where
termsO(1) do not depend oM and can be found from Eq.
(37) by L'Hopital’s rule.

Accordingly, the average flight leng(x) performed from
the pointk=x/1, is replaced byM —one-dimensional vector

s with elements

Note that the average total path length traveled before |
absqrption by thg Dey flyer can be ex}pressed in terms of Se= 0 1 + 1 —2al. (41)
survival probability ©(t) of the Levy walker: (S) 2(1-a)| k>t (M—k)* !

= [5©(t)dt. According to Ref[27], this survival probabil- _

ity exhibits for t—o asymptotic exponential deca§(t)  The average number of flights for the process that starts from
~exp(~|A4t), whereA ; is the main eigenvalue of the cor- POINtk=x/l is

respondent problem. Substitutifiyt) by its asymptotic, we
can estimat€S)~1/|A4|. Thus(S) and 1/A,| must have
identical asymptotic behavior for larde Indeed, Eq.37)
yields S,(x)~L for 0<a<1 andS,(x)~L*“ for 1=a<2,
in complete agreement with asymptotic approximations ofyherec is the vector with all components equal to 1, axd
Ref. [27]. is a unit basis vector with componergg= &,;, wheredy; is

Finally, we will find the probabilityP,(X,) of the absorp-  the Kronecker delta. Analogously, the average total length is
tion by the right boundary in the continuous limit. According equal to

to Egs.(13) and (14), P,(xg) should, in continuous case,
satisfy Eq.(29) with h(xg)=—15 “p;(Xo), i.e.

<n>k=(n§OAmék~6)=[<l—A>16]k, (42)

<S>k=lo<nZOAmék~§)=[(|—A>—1§]k. (43)

DoPr(Xo)=—(L—Xo) /2. 38
r(*o) ( 2 39 The symmetric matribR=(A—1) ! is the analog of the self-

conjugate operatord—Z) 1. Using iterative techniques for
For xo=0, the flyer is immediately absorbed by the left matrix inversion, we obtain the numerical solutions {op
boundary, sd®,(0)=0. Forxy=L, the flyer is immediately and(S).
absorbed by the right boundary, Bp(L)=1. Thus the sec- In Fig. 1, we compare the numerical solutig42) for
ond term in the expressio(23) for &,P,(Xg) is equal to  (n(xp)) and the continuous limit approximation,(Xo)
zero and the third term cancels out with the right-hand sidegiven by Eq.(36) for the casex,=L/2. In order to test the
HenceP,(xq) satisfies homogeneous EO) and boundary asymptotic convergence, we have to divide both functions by
conditions P,(0)=0, P,(L)=1. This solution can be ex- (M/2)“. It can be seen that foty/I;>1, Eg. (36) provides
pressed in terms of the homogeneous solutiggix) ob-  good approximation for the average number of flights of the
tained in Appendix B discrete process defined by Edl). Studying the difference
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08} R 1
06 | \ 1
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02 O extrapolation
2sin{ro/2)/(na)
0 L L 1 D 0'00 0 o|5 1lo 1I5 2.0
0 05 1 15 2 ' ' : ' '

o

S FIG. 2. The behavior of the scaled average total path length
(SYa—1)/(LM* 1=L) vs a for increasing values ofM
=50,100,200,400,800,1600 in the cage-L/2 in comparison with
the continuous limit prediction of Eq37) in the limit M—oo
sémwn as a bold line. In this limit, continuous approximation fol-
ows the first term of Eq.37) for a<1 and the second term
sin(mal2)/7 for a=1. We see good convergence to the predicted
function except for the values af~2.

FIG. 1. The behavior of the scaled average number of flight:
(n)(M/2)™* vs « for increasing values of M
=50,100,200,400,800,1600,3200 in the cageL/2 in comparison
with the continuous limit prediction of E¢36), 2 sin(ma/2)/(w«),
shown as a bold line. We see good convergence to the predict
function except for the values af~2. We extrapolate the values
(n)(M/2)~« for M—o (circles using their polynomial fits with
respect taVl ~* for <1, or with respect tdv?~ * for 1<a<2, or

with respect to (IM) ™! for a=2. _ .
P (M) “ vicinity of the absorbing boundary.

between the numerical values @fy(M/2)”“ and the con- In summary, comparison of the numerical solutions for
tinuous approximation 2 sim/2)/(7a) for x,=L/2, we the mean first passage time ofweflights and Ley walks
confirm that for 2>a>1 this difference decays ad“ 2  and the exact solutions of these problems in the continuous
with M—o0. This is in agreement with Eq25). However, case suggests that fractional differential equation for super-
for <1 the difference between the numerical solution and
the continuous approximation converges Ms *>M& 2, 1 . . .
The termM ~ 1 is proportional to the error of replacement of
integration in Eq(12) by summation.

In Fig. 2, we compare the numerical solutios3) for 0.8
(S(xp)) and the continuous limit approximatioB,(Xy)
given by Eq.(37) for the casexy=L/2. In order to test the
asymptotic convergence in this case, we have to divide botry 96 T

functions by (_Ma—l__L)/(a—l). It can be seen that for S o 32?30

Xo/l1o>1, EQq.(37) provides good approximation for the av- “A ---- M=200

erage total traveled length in the discrete process defined b ‘\:, 041 ——- M=400 »

Eq. (21) ZZ Mat6oo \
Now we will examine the quality of the continuous limit ——- M=3200 A

approximation in the vicinity of the absorbing boundary. For R ——) i

simplicity we will study only the behavior of the average — 2sin(ro/2)/(mor) L

number of flights. The approximation for the total path . . .

length has similar problems. Figure 3 shows thatXgfl, °5 05 1 15 2

=1, the correction terms in E¢35) cannot be neglected. As o

shown in Appendix A, the operatal,— 0 for any fixedx, if

[,— 0, but does not vanish ¥, andl, both approach zero,

so that their ratioc/l ;—r>0. Accordingly, the value ofn)
— al2

behaves fox,/lo=r, M—2 asx(a)(rM)** wherex(a)  ith the continuous limit prediction of Eq36) 2 sin(ma/2)/(wa),

>2sin(mal2)/(wa) is some unknown function that can be ghown as a bold line. Although the values are close to the continu-

estimated numericallysee Fig. 3. It is likely that x(«) re-  ous limit predictions, they converge to a different functipfw) as
mains positive ag— 2. The analytical determination of the M — . To obtainy(a), we extrapolate the valugs)(M/2)~ ¢ for

function y(«) remains an unsolved problem. NeverthelessM—  using the same procedure as in Fig. 1. We assume that the
continuous approximation correctly predicts the leading facerror bars are equal the discrepancies between the extrapolation and
tor M2 for the average number of flights started in thethe continuous limit in Fig. 1.

FIG. 3. The behavior of the scaled average number of flights
(nNY(M)~*2 vs @« for increasing values of M
=50,100,200,400,800,1600,3200 in the cagel, in comparison
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—— M=800 (analytical)
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100

<S>

0.6 1 1 1 1
0.00 0.01 0.02 0.03 0.04 0.05

(In M)

FIG. 4. Semilogarithmic plot of numerical solutions(@) vs «

for the case xy=Ip=1 and various values of M FIG. 5. The values ok (M), determined in Fig. 4 as a func-

=50,100,200,400,800. Circles indicate the positions of the minimdion of (In M) 2. The line shows linear least square fit, obtained by

amin(M) which shift towards the vertical line=1, asM increases. including a hypothetical limiting value;,(>)=1.

In addition, we show the analytical continuous limit approximation

S,(lo) given by Eq.(45) for M =800. Xp is selected in the vicinity of the absorbing boundary and
show that in this cas&,(xg) has a minimum atr—1. In

diffusion Eq.(26) with absorbing boundary conditions pro- order to do this, we will present solutiof87) in a more

vides good approximation for discretéwyeflights on a finite  convenient form, which allows to separate leading singulari-

interval with absorbing boundaries. However, this approxi-ties atz— 0. After some transformations involving hypergeo-

mation breaks down whea—2 and in the vicinity of the metric functiong39], we can rewrite Eq(37) as follows:

absorbing boundaries.

a a—1qi E
VI. ANALYSIS OF THE TOTAL PATH LENGTH: _2L(z-7)2 M Sm( 2 ) (1-2)f4(a,2)
IMPLICATIONS FOR BIOLOGICAL FORAGING Sa(X0) = a—1 T B a a
Recently, biological foraging has been modeled byyLe aB( 2 '2)
flights [7,33—37. The case of nondestructive foragifde-
fined in Ref.[36] as case in which “target sites” can be L(2—a) @,
revisited not just once but many timesorresponds tog T 2a-1) 1-fy(a,2)(1-2)2

=1, i.e., the forager starts its next search from the previ-

ously visited food site, located at the origin. The prey may

reappear at this site. Accordingly, coming back to the origin @

may be profitable in terms of foraging efficiency, which is 4fy(a,z)zz "t

defined[36] as the inverse average total path length before o a)
2’2

finding next food site. With the help of Monte Carlo simula- a(a+2)B
tions, it has been showi36] that, in the case of nondestruc-
tive foraging, the foraging efficiency has maximum @t | here
=1.
We confirm this result, using numerical solutiet8). Fig- a
ure 4 shows a semilogarithmic plot ¢8) versusa for xg fl(a,Z):F( a,2§+1,2
=ly and various values dfl. On can see that the minima,
amin(M), shift towardsa=1 asM—oo. Heuristic approxi- a a
mations[36,37] suggest that foraging efficiency has a maxi- fo(a,z2)= F( 2— 5,5,1— §’Z>
-2
mum at 1- €, wheree~ (In M) . Consequently, the average
total path length should have minimum at the same pointgng
Figure 5 confirms this prediction for the numerical solution.
It shows the graph odtmin(M) vs[In (M)]~2, which is almost
a straight line with an intercept py(«°)~1. fa(a,2)=F
In the following, we will prove this result using the con-
tinuous limit approximation(37). Accordingly, we will find  The first term in solution(44) decreases ag“<, when z
the behavior ofS,(Xg) for the case when the starting point —0, while the second part decreaseszasf we take the

+2,z]|.

) a a
22’

al2

041108-8



AVERAGE TIME SPENT BY LEVY FLIGHTS. .. PHYSICAL REVIEW E 64 041108

starting pointx,=rl,, wherer is constant, there=r/M, tributions from each flight in the form of the Fredholm inte-
whereM is the large number, and we can separate the Ieadingra! equation of the second kind. We applied this method to
(with respect toMl) terms in solution(44) erive the probability of absorption by one of the boundaries.
In Sec. lll, we have derived expressions E@)) and (21)
a2 L a o« 1 for the average total path length of théMyeflights which is
Salrlo)=r ﬂ[’?(“)mz —{(a)M 7 2]+LO(M ), equivalent to the mean first passage time of theylwalks.
(45) In Sec. IV, we have showitsee Appendix A how the
discrete Ley flights are related to the fractional differential
where equation Eq(26) of the superdiffusion with Riesz operator
) Eq. (23). For the continuous process described by @6),
()= 2sin(mal2) (a)= 2 (46) we derived exact analytical expressions E&§), (37), and
T ’ ' (39 for the mean first passage time, the average total path
aB(gyg) length, and the probability of absorption by one of the
boundaries, respectively. All these quantities are the solu-
The above approximation accurately follows the solutions otions (see Appendix Bof the fractional differential Eq(30)
the discrete problem fon<<1, when the termi(a)M %2  with Riesz kernel and with different right-hand sides. In Sec.
dominates, but strongly deviates from that fer-1, when V, we have compared these analytica}l solutions with numeri-
X 4 . _ cal solutions obtained for the discretevyeflights (see Figs.
the termz(a)M2 "~ dominatessee Fig. 4 The reason for  1_3 "\ve have shown that fractional differential formalism
these deviations is the truncation of the nonleading terms ”fSrovides good approximation for the discretevizdlights in
the Eq.(34). . . . the interval with absorbing boundaries except the case of
. In cc_)ntrast with the discrete splqun and Monte Carlo_)z and the case when the starting point is in the vicinity of
S'f"‘.“a“"”s of Ref.[36] expression Eq.(45) has tV_VO an absorbing boundary. In the latter case the fractional dif-
minima: one air=1+€(M) and another atr=2. We W,'" ferential formalism yields correct scaling behavior with re-
show thate(M)—0 asM—w. Let us expandy and ¢ in spect to the interval size and distance to the boundary, but
powers ofe gives an incorrect proportionality coefficietgee Fig. 3.
In Sec. VI, we have investigated the behavior of the av-
erage path length as a function of the starting point and as a
(47)  function of «. We have derived asymptotic expression Eq.
Note thatzo= o= 2/, and hence the expressiots) does (45 for this quantity in the case when the starting point is
not have a singularity at=1. The location of the minimum located cIos_e to the absorbing boundary. We have shc_>wn that
can be found by differentiation of the expansion for the expression for the average path length has a minimum at
Sl+s(r|0) W|th respect toe and equating the |eading terms Of a~1 |f the proceSS starts In the V|C|n|ty Of the abSOI’bIng

7](1+E):7]0+7]1€+ ey §(1+6):§0+§1E+ PP

the order of IrM boundariessee Figs. 4 and)5This result, as well as Egs.
(39) and (44), can be applied to the problem of light trans-
6(m,+{1)+3nInt . mission through cloudy atmosph€25,26|.
=- 70(INM)2 +o([InM]™) Similar fractional integral operatof8,13] — namely the

Riesz operatoV “ — can be used to treat the problem of the
6—12In2—-3Inr s Leévy flyer in the dimensions higher than one with randomly
- (InM)2 +o([InM] ). (48) distributed absorbing traps. Letbe a characteristic distance
between neighboring traps. Then we still expect that the av-
Indeed, Eq(48) shows thate(M)—0 asM—o andr stays erage number of flights before absorption scalek‘a# the
constant. process starts far away from the absorbing boundary and as
This analysis holds for any smooth functiopsand¢, so L2 if the process starts in the vicinity of the absorbing
long asy(1)=¢(1) and, therefore, is likely to be valid in the boundary. This result is sufficient to prove that the minimum
discrete case, in which, functiong(a)=74(a) and /(«)  Of the average total path length traveled by the flyer before
=/4(a) do not satisfy Eq.46). Note that4(«) can be absorption is achieved at—1, if the flyer starts in the vi-
expressed in terms of functiop(«) shown in Fig. 3, namely cinity of the absorbing point.

n4(a) = ax(a). Analysis of Fig 3 shows that(2)>0. Con- Finally, we comment on the relevance of our findings to
sequently, the minimum a¥=2 does not exist in the dis- biological Levy flight foraging. Our results essentially con-
crete case. firm that Levy flights with =1 (or x=2 in notation of Ref.

[36]) should theoretically provide the optimal strategy of for-
aging in the case of sparsely and randomly located food sites,
if any food site can be revisited many timg&6]. The pres-

We have studied g flights in a finite interval with ab- ence of the second minimum near=2 predicted by con-
sorbing boundaries. In Sec. I, we have derived expressiontnuous limit approximation may indicate another possible
Egs. (11) and (12) for the average total number of flights strategy for foraging, i.e, to perform Brownian walks in the
(mean first passage timéMe also obtain a general recursion region of possible appearance of prey. Breakdown of the
relation Eq.(13) for the average of the sum of arbitrary con- continuous limit approximation in the vicinity of the absorb-

VII. SUMMARY
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ing boundary indicates that the results should depend on the APPENDIX B: SONIN INVERSION FORMULA

particular details of the model. Equation(30) belongs to a class of generalized Abel equa-

tions. In his classical works, Sonj82] suggested a general
VIIl. ACKNOWLEDGMENTS method for solving such equations. In particu[&1], an
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(B1)
APPENDIX A: EXISTENCE OF THE CONTINUOUS LIMIT has a solution
OPERATOR
L tloedt

We will show that operatoP,, is defined on any function B 78~ 1 d y* h(v)d
bkl : ©(2)=B,z d T h(y)dy,
f(x) that has finite limits at both ends of the intenfD) z (t—z)f e dtJo(t—y)1 A

and f(L) and finite second derivativé”(x) at any inner (B2)
point x of the interval[O,L]. According to Eqs(6) and(22)

where
D,f(y)= lim1g [ il fy o_T(xdx_ B,=—2siNmAT ()l XA (1~ B+ a)
2 _vya+l
o0 ° ) x(ag+ay) "L, (B3)
N J’L foodx | - ( )] (A1)  @nd parameteg is determined by relations
| _ a+l '
rlo(x=Y) sin{ (8- a)]=c, sin(7pB), (B4)
Making partial integration of both integrals in EGAL) we Y
get e (B5)
Yo lagtay
D, f(y)= lim [ r(y_l(’) + f(y+lo) - Similar inversion formulas can be found in RE29].
lo—0 2 2 In the case of Eq(30) v=1, a,=0, anda;=—1. Hence,

according to Eq(B5) ¢,= — 1. Equation(B4) has an infinite

N 1 JHO I”(X)dX+ fL f'(x)dx number of solution$=a/2+ k, wherek is an integer. For
2 0 (y=x)* Jytig(x—y)® 0<a<2, only two solutions withk=0, k=1 lead to the
converging integrals in EqB2)
(A2)
al2—1 d - 1-a al2 d al2
f(0) f(L) ¢1(X) =B,z az), dtt“(t=2)" 5 JJ
2y*  2(L-y)*’ -
X (t=y)*? *h(y)dy (B6)
For a<2, the first term in Eq(A2) goes to zero as d
an
EIZ—afn(y) d d rt
2 0 . (PZ(X):_BaZa/Zd f dttl a(t Z)a/2 ldtf yal2—l
The second term converges to the principal value of the in- X (t—y)®?h(y)dy (B7)

tegral
where

jLsgr(x—y)f’(x)dx

=P , (A3) To
0 2ly—x|« 4 si 7
: : . o (B8)
which exists fora<2 if f’(x) has a derivative at=y. g g
Subtracting Eq(A3) from the second term in EqA2), 2 2

replacing f'(x) in the integrand by its Taylor expansion
fr(x)=1'(y)+f"(y)(x—y)+o(x—y), and combining it Since Eq.30) containsf’(x)=¢(x), one can always satisfy
with the first term of Eq(A2), we reproduce Eq25) for the  the first boundary condition Eq(31) by defining f(x)

correction operatod ,(ly). This shows that the operat@r, = [pe(z)dz. Adding solution(B6) for h(x)=—1 and solu-
is well defined for the class of functions with existing secondtion (B7) for h(x)=1, one can see that the homogeneous
derivative. equation withh(x)=0 has a nontrivial solutionpy=(Lx
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—x?)%2=1 Hence the second boundary condition E8l)  ary condition Eq.(31), we should havep(x)=—¢(L—x).

can be satisfied if we selegt=¢;— Cgpq, with constantC To construct such a solution, we first find the solutioy{x)

=L *fbo(x)dx/B(a/2,a/2). In caseh(x)=—1, straight-  for the first term in Eq.(16) h(x)=x'"¢. Obviously, the

forward calculations lead to E¢32). function — ¢4(L —X) provides the solution for the second
Now we will obtain the analytical solution for the average term h(x)=(L —x)*~¢. The solution for the third constant

total path length before absorption in the continuous processerm is given by Eq(32) with a proper coefficient. Summing

S,(x). In this case, the right hand side of E@®0), h(x) up all three partial solutions and using various properties of

=s(x), is given by Eq.(16), and we can use its symmetry hypergeometric function$9], one can find the total solution

h(x)=h(L—x). Thus, in order to satisfy the second bound- presented in Eq37).
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