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We review recent numerical simulations of several models of interface growth in d�dimensional
media with quenched disorder� These models belong to the universality class of anisotropic
diode�resistor percolation networks� The values of the roughness exponent � � ���	 � ���

�d � 
 � 

 and � � ���� � ���� �d � � � 

 are in good agreement with our recent
experiments� We study also the diode�resistor percolation on a Cayley tree� We �nd that
P� � exp��A�ppc � p
� thus suggesting that the critical exponent for P� � �pc � p
�p �
�p � � and that the upper critical dimension in this problem is d � dc � �� Other critical
exponents on the Cayley tree are� � � 	� �k � �� � � � 	 � �� The roughness exponents on
the Cayley tree are� � � � � �� z � ��

�� Introduction

The growth of rough interfaces in random media is a topic of current interdisciplinary interest
�
���� For the most part� two types of models have been applied to interface�roughening phenomena�

�a
 nonlinear Langevin�type equations�such as the KPZ equation ����resulting in self�a�ne in�
terfaces� and

�b
 spreading and invasion percolation models ���� generating self�similar interfaces

The self�a�ne interface �a
 can be characterized by the rms surface width

w�
� t
 � h�h�x� t
� hh�x� t
i��i���� �



Here h�x� t
 is the surface height at time t� and the angular brackets denote the average over x
belonging to a d�
�dimensional hypercube of size 
d�� in the horizontal cross section perpendicular
to the direction of growth�

An alternative and equivalent quantity is the height�height correlation function c�
� t
 ���� The
scaling exponents obtained from w and c are believed to be identical� so we use them interchange�
ably�

Analysis of the KPZ equation implies the scaling law �
���

w�
� t
 � c�
� t
 � 
�f

�
t


z

�
� ��a


where

f�u
 �
�
u� u� 

const u� 
�

��b


and
z � ���� ��c
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Of course� the scaling function f�u
 is di�erent for w and for c� The roughness exponent is � � 
��
and the dynamical exponent is � � 
�	 for d � 
 � 
 ���� Numerical studies of the KPZ equation
give � � ���d� �
 in d 	 � ���
���

On the other hand� approach �b
 �percolation�type models
 produces self�similar interfaces ���
for which w�
��
 � 
� with � � 
 and � � 
� For many phenomena in d � 
 � 
�from bacterial
growth �

� and viscous �ows �
��
	� to the wetting �
	�
��� and burning �
�� of paper�self�a�ne

surfaces are found with anomalous exponents � and � signi�cantly larger than the KPZ values but
less than 
� Recent experimental data in d � � � 
 also show anomalously large values of �� e�g��
for mountain surfaces � � ���� �
��
��� for wetting of porous media � � ��� �
��� and for ion beam
erosion of metal surfaces � � ���	 �����

An essential feature of many of these systems is that the noise is quenched� i�e� noise is a
function of the interface position� as opposed to the uncorrelated noise of the KPZ equation� A
critical question� then� is the scaling properties of systems with quenched noise� In particular� what
phases� if any� are there which exhibit self�a�ne growth with � � �KPZ�

A complete answer to this question is not yet available� Recently� we and others have introduced
an interesting class of models which exhibit new scaling behavior related to directed percolation�
Another line of investigation ��
��	� appears to indicate a direct transition in some models from
a random��eld Ising model phase with � � �� � d
�	 to KPZ behavior� However� more recent
work ���� suggests that this result might be due to the neglect of a KPZ�type nonlinearity in the
dynamics� As we shall see it is possible that the non�linear equation of Csah�ok et al� ���� is in the
same universality class as our models� Clarifying the relationship of these and other models �������
is a topic that clearly merits more study�

As a step in answering this question� we develop and generalize several models �
	�
�����	
� of
spreading percolation with anisotropy in the growth direction which belong to a new universality
class characterized by a self�a�ne interface with the roughness exponents given in Table 
� We
explore the relation of this universality class to the reversed percolation transition point in the
diode�resistor percolation network ����	��� at which the back�ow current emerges in the direction
opposite to the direction of diodes� when the concentration of resistors q approaches some critical
value qc � 
�pc �p � 
�q is the concentration of diodes
� In d � 
�
� this transition point is dual to
the directed percolation point ����	�� and the roughness exponent � of the interface between blocked
and unblocked diodes can be expressed in terms of correlation exponents of directed percolation�

In d � �� little is known about the critical properties of this transition� Recently� several
theoretical conjectures have appeared concerning the values of the critical exponents of the surface
roughening models with depinning transition caused by the quenched noise for continuum systems
�������� The numerical data for the continuum models in d � 
 � 
 strongly support the argument
that these models belong to the same universality class as discrete models described below� However�
according to ������� d � � should be the upper critical dimension above which � � � � �� Our
numerical results do not support these conjectures� To undersand the problem of surface roughening
in high dimensions we studied the random diode�resistor network on a Cayley tree� Our results
indicate that the critical dimension is dc ���
�� Models

The models A� B and C we have studied are straightforward generalizations to d dimensions of
the d � 
�
 models de�ned in �
	�
������� and ����� In each model the porous media is simulated by
a cubic lattice with certain fraction p of randomly blocked cells which represent the inhomogeneities
of the media �see Fig� 

� The horizontal cross section of the lattice is the d�
 dimensional hypercube
of volume Ld�� with periodic boundaries� Every lattice cell can be wet or dry� At t � �� all lattice
cells are dry except those with vertical coordinate h 
 �� At every time step� we simultaneously
examine all dry cells on the wet�dry interface and decide whether each of these cells should become
wet on the next time step� The decision concerning each cell is taken according to the deterministic
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rules speci�c to each model� In analogy with spreading percolation ���	��� we de�ne shell t as the
set of cells that become wet on time step t�

In Model A� each cell adjacent to the interface becomes wet if �i
 it is unblocked or if �ii
 it
lies below the unblocked cell� adjacent to the interface�

In Model B� the cell becomes wet if �i
 it is unblocked and its nearest neighbor from below is
wet or �ii
 if the height of the highest wet cell in one of the nearest neighboring columns is larger
then the height of the cell under consideration�

In Model C� rule �i
 is the same as in Model B� but rule �ii
 is slightly di�erent� The blocked cell
with the coordinates �x�� x�� ���� xd��� h
 becomes wet if its nearest neighbor from below is wet and
at least one of the cells with the coordinates �x���x�� x���x�� ���� xd����xd��� h��h
 is wet�
where the increments �xi and �h obey the following constraints� �h 	 �� j�xij 
 
� if �h � �
then it is su�cient that j�xij 
 
� if �h � � then �xi � � or �xi � ��

h�xi � Model C is in
fact equivalent to the diode�resistor network in which each blocked cell corresponds to a diode� and
each unblocked cell to a resistor connecting a pair of the opposite vertices of the cell� Each diode
or resistor has orientation ��x���x�� �����xd����

� where �xi � ���

xi�h are determined by
the coordinates of the cell �See Fig� 
c
�

Model A is analogous to spreading percolation �rule �i
� with erosion of overhangs �rule �ii
��
In Models B and C� the height of each column at each time step can increase only by one cell� In
Model A� the erosion of overhangs corresponds to much faster local growth� Also� in Models B and
C� the maximal di�erence in heights of the two neighboring columns is �� while in Model A� it can
be any number�

Model A was suggested by Buldyrev et al� �
	�
��� while Model B was originally proposed by
Tang and Leschhorn ���� and can be considered as the discretized version of the Langevin equation
with quenched noise and is very close to the models de�ned by Csah�ok et al� ���� and Parisi �����
Comparison of the time development of all three models is shown in Fig� 
 for the same d � 
 � 

con�guration of blocked cells� The growth of each model is stopped by the spanning paths of
directed percolation of the blocked cells with di�erent de�nitions of connectivity �shown as a red
fence of blocked cells
� In Model A the path has �ve choices �North� South� East� North�East and
South�East
� in Model B three choices �East� North�East� and South�East
� in Model C only two
choices �North�East and South�East
� This results in di�erent percolation thresholds� pAc � �������
pBc � ���	�� pCc � ������� Numbers on the cells show the time at which they become wet� These
models have di�erent �nite size corrections to scaling� but the asymptotic behavior is characterized
by the same set of exponents�
�� Dimension 
 � 
� Theory and Simulations

In this section� we review theory and simulations for d � 
 � 
 �
	�
��� When the probability
of blocked cells p is close to pc� the growth is halted in many places by the paths of a directed
percolation cluster� Each path can be characterized by two correlation lengths� 
� and 
k� When
the path is spanning� i�e�� when the growth is stopped completely� 
k is equal to the system size
L� and 
� is proportional to the width of the interface w� It is known from the theory of directed
percolation �	��		� that the correlation lengths diverge in the vicinity of pc as


� � jp� pcj���� 
k � jp� pcj��k � �	a


where �k � 
��		� and �� � 
���� �	��� Thus�

w � 
� � L����k � L�� �	b


where
� � ����k � ���		� ����
� �	c
�
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Thus the spanning path of directed percolation describes the �nal state of the paper wetting
experiment �
	�
��� where the wetting front is completely pinned by inhomogeneities in the paper�
The theoretical value of � �Eq� �	c
� is in excellent agreement with both our simulations and our
experiments �
	�
���

A natural question is �What is the dynamics of wetting ! To answer this� we study the
dynamical behavior of the models below and above pc� Figure � shows a snapshot of the wetting
front as it continues to propagate in the �
 � 

�dimensional media when p � pc� Large sections of
the interface are already pinned and the growth is occurring only in columns that contain unblocked
cells on the wet boundary �shown in red
� The average horizontal size of pinned sections is 
k� while
the average vertical size of pinned sections is 
�� The moving parts have constant steep slope �in
Model B it is exactly equal to ��� and their vertical and horizontal dimensions are proportional
to 
�� The height�height correlation function c�
� t
� calculated for such an interface for 
 � 
�
is of the order of 
��������� � 
����� When 
� is very large� the e�ective value of the exponent
� for l � 
� is close to 
� The e�ective roughness exponent of this moving interface�calculated
directly from our numerical data near criticality in d � 
 � 
�is �dyn � ���� � ����� in good
agreement with the above geometrical arguments� The growth is now mostly a fast erosion of steep
slopes� propagating horizontally with constant speed� This observation implies that the dynamical
exponent zdyn � �dyn�� has a value close to one� Thus� � � �dyn� in good agreement with our
numerical results �
	�
��� This large value of �dyn may explain the large values ���� ��� found in
dynamical experiments �

�
���

In the case d � � � 
 we �nd that for all studied models � � ����� ����� � � ���
� ���� and
z � 
�
�� ����� while the results for pc for the di�erent models are shown in Table 
� In d � � the
duality to directed percolation breaks down� and the growth of the surface is pinned by self�a�ne
hypersurfaces� that can be characterized by horizontal and vertical correlation lengths 
k and 
�
�see Ref� �	�� for an isotropic model of percolating hypersurfaces
�

Below criticality moving parts form steep circular terraces� surrounding pinned parts �see
Fig� �
 � However� the moving parts in d � 
 � 
 do not move along straight lines� but rather
perform a kind of correlated random walk� which implies z 	 
� At d � dc� z should become �� as
for uncorrelated random walk� We �nd that even for d � � � z � 
�� � ��
 � �� suggesting that
dc � ��

The e�ective roughness exponent found for the moving interface in d � ��
 near criticality is
about ����� ���� which is in good agreement with our experiments on wetting of 	d porous media
�
���
�� Avalanches and Fractal Dust

Above pc� the growth is stopped by the spanning path of a directed percolation cluster in
d � 
 � 
� or by a self�a�ne surface in d � �� 
� However� we can modify our models and assume
that even when the growth is completely stopped� the blocked cells on the interface may still
erode�but at an in�nitesimal rate� With this assumption� we can remove blocked cells at random
when the interface is completely stopped� Each removal will produce an avalanche of growth which
eventually will die out when the front reaches another directed spanning path� or directed surface
of blocked cells �see Fig� 	
�

The distribution of avalanche sizes P �V 
 is found to be �
��

P �V 
 � V ��avalF

�
V

V�

�
� ��a


where V is the number of sites removed in an avalanche� and V� � 
d��k 
� is the characteristic

volume� The probability P �V 
 is estimated to be the ratio of the number of avalanches of size V
to the total number of avalanches�
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In d � 
 � 
� the maximum linear extent of the avalanches �Fig� 	
 in the longitudinal and
transverse directions is found to scale with exponents

�avalk � 
��	� ����� �aval� � 
�
�� ���� ��b


in excellent agreement with the correlation�length exponents of directed percolation� Moreover� we
�nd �
��	��

�aval � 
���� ���	� ��c


This result is in agreement with �aval � ���
 � �
 found for d � 
� 
 by Olami et al �	���
"From avalanche studies in d � � � 
 we �nd the correlation�length and roughness exponents

to be �k � 
���� ��
� �� � ����� ��
� which gives slightly smaller value of � than from analysis
of height�height correlation function and width� � � ����k � ����� ��
� This may be due to large
error bars that are caused by comparatively small errors in the value of pc�

An alternative way of producing avalanches is to start growth from a single unblocked cell at
time t � � when interface is �at �Fig� �
� Above pc� the clusters of wet cells will be all pinned by
the blocked cells� Below pc some of these clusters will grow in�nitely� but some will be stopped by
the pinning surfaces�

In analogy with conventional percolation� the survival probability Psurv�t
 of the clusters for
t � to will decay as a power law� Psurv�t
 � t���surv � Here to is the characteristic time which is

related to the correlation lengths� 
k � t
��z
o � 
� � t�o � The exponent �surv is related to the �aval of

Eq� ��
�
��surv � 

 � ��aval� 

�d� 
 � �
�z� ��a


For t � to� Psurv�t
 either goes to zero exponentially for p � pc or approaches a constant
value P ��
� the probability of an in�nite cluster� for p � pc� Thus� studying Psurv�t
 provides very
accurate method of estimating pc� The critical exponents can be derived from the parameters of
the clusters exactly at pc� One of these exponents is the exponent � that characterizes the time
dependence of the size of the percolation shell� n�t
 � t	 � It is possible to connect this exponent
with z and ��

� � 
 � �d� 
 � �
�z� ��b


In d � 
�
� z � 
� so � � � � �� which agrees with the simple geometrical picture �Fig� �
 that the
projection of the shell corresponds to the length of the largest steep moving terrace� which scales
as the vertical size of the whole system w�t
 � t� � We have studied the time dependence of the size
of the shell n�t
 � t	 numerically� The results are in agreement with the above relations�

The projection of the shell forms a fractal dust �Figs� � and �
� In d � 
� 
� when z � 
� the
fractal dimension of this dust df is connected to the exponent of distribution of avalanches �i� e�
blocked regions
 through the relation

df � �surv � 
 � ����� ����� ��


Note that df � � which means that� in fact� fractal dust is packed in moving blocks �the largest
moving block is about of the vertical system size w�t

� These moving blocks behave like quasi�
particles which are distributed in a fractal way with fractal dimension equal to df � Direct numerical
studies of the correlation function of the dust support this point of view�

	� Possible generalization of the diode�resistor problem to the d�� limit

The generalization of the random diode�resistor problem to in�nite dimension �d��
 is next
considered� If our assumptions are correct� the model we study corresponds to the Cayley tree limit
�	��	���
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Consider a Cayley tree with coordination number zc � � �	
� �Fig� �
� We assign an altitude
i 	 � for each site on the Cayley tree� In this way� each site at level i is connected via two bonds
to a higher level i � 
� and by two bonds to a lower level i � 
� The sites on the level i � � are
connected only to the sites at level i � 
�

Next� with probability p a bond will be occupied by diode pointing to a lower level or with
probability 
 � p by a resistor� There exists a diode�resistor percolation threshold� p � pc� above
which there is no current between a site at level i � � and a site at level i � ��� Below pc there
is a �nite probability that a site at level i � � will be connected with �� by a path of resistors
and diodes on which current can �ow from i � � to i � ��� We de�ne a cluster with respect to
a given site at level i as the set of sites that can be reached by a current starting at this site� We
also de�ne a cluster brunch to be a set of sites that are connected to a given site through one of
the adjacent bonds�

To �nd pc and the critical behavior we de�ne the following quantities� Let Fi�s
 be the prob�
ability that a site at level i is connected via an upper bond to a branch of size s and Hi�s
 is
the probability that a site at level i is connected via a lower bond to a branch of size s� Solving
recursion relations for the corresponding generating functions� we �nd that the probability to be
connected to the in�nite cluster has the novel form �	��

P� � B exp

�
� Ap

pc � p

�
� ��


where A � ���	

p
� ln 	 for z � �� From Eq� ��
 follows that the exponent �p de�ned by P� �

�pc � p
�p has the value �p �� for the diode resistor on a Cayley tree�
We �nd the exact value of the critical threshold to be pc � 
� 
��zc � 

�� Furthermore� we

�nd that the correlation function �the probability that a site on the level � is connected to a site
on level h
 decays at the critical point exponentially as �zc� 

h� which means that 
� is �nite and
hence �� � ��

The logarithmic derivatives of the generating functions give the average sizes of branches that
are connected to a site on level i from above and below respectively� Solving the corresponding
recursion equations� we obtain that average size of the �nite branch is �nite below and above pc�
but has a �rst order discontinuity at p � pc� This implies that � � �� We also �nd that the average
cluster size� that reached level h� scales like �zc � 

h� while the minimal cluster size at the level
h scales like �zc��
h� This means that the average number of summits of such a cluster scales like
��� ��zc


h� These summits perform a random walk in the horizontal dimension of the Cayley tree�
which means that the horizontal radius of the cluster is the square root of the number of summits�
which still grows exponentially with h� hence the roughness exponent is � � �� We �nd� however�
that the horizontal characteristic length 
k remains �nite at the critical point� hence �k � � �	���

Direct studies of the cluster size distribution obtained show that the exponent of the cluster
size distribution �aval is a monotonically increasing function of the diode probability p� Exactly
at the critical point Fo�s
 � �s ln s
���C � O�
� ln s
�� which is consistent with the �rst order
discontinuity of the average cluster size observed at the critical point� In the standard percolation
notations� this means that � � 	� larger than � � ��� for the regular Cayley tree� Below the critical
point �aval�p
 � �� but there appears an abrupt exponential cuto� of the distribution at the cluster
size so � exp�A�

p
pc � p
� implying 	 � �� The derivation of the above results will be published

elsewhere �	���
Using hyperscaling equation with the above values of the exponents ��� �k�d� 

 � � � ��p

we suggest that the critical dimension of diode�resistor problem is dc ���


� Discussion
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We have studied several models of surface growth in the quenched disordered media near the
pinning threshold� These models are in the universality class of the diode�resistor reverse perco�
lation� The numerical results are in good agreement with anomalously large values of the critical
exponents� obtained in many experiments in d � 
� 
 and d � �� 
� The importance of quenched
noise and pinning as a mechanism of surface roughening was suggested by several authors �������	��
which studied the continuum Langevin equations with quenched noise as models of surface growth�
Our numerical results are in rather good agreement with the numerical results of those authors in
d � 
 � 
� but di�er in prediction of the behavior in high dimensions�

The behavior of the model on the Cayley tree suggests that the upper critical dimension is
equal to in�nity� in disagreement with �������� It should be mentioned� that the invasion variant of
the present models �
�� �where at time each step a site with the smallest resistivity is taken out� was
later interpreted as the model of self�organized criticality �	������
�� However� all the properties of
the later model� including the distribution of avalanches� can be derived from the corresponding
properties of the present models�
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Fig� �� Explanation of the surface growth models A� B and C in d�
�
� Cells are randomly blocked
with probability p �shown in blue
 or unblocked with probability 
� p �shown in green
� Wet cells
are shown in white �those that were unblocked before the become wet
 or yellow �those that were
blocked
� Wet cells are marked by numbers indicating time step at which they have become wet�
Those blocked cells� that form the spanning path of directed percolation that has stopped the
growth are shown in red� �a
� Model A� proposed by Buldyrev et al� �
	�
�� �pc � ������
� �b
�
Model B proposed by Tang and Leschhorn ���� �pc � ���	��
� �c
� Model C proposed by Dhar et
al� ���� �pc � ������
� The con�guration of blocked cells is the same for all three models� so the
largest cluster of model C corresponds to the largest pc� In model C diodes correspond to blocked
cells resistors to the unblocked cells� The order of wetting di�ers from the original de�nition of Ref�
���� in order to prevent overhangs in the moving parts of the interface� These changes� however�
does not a�ect the the shape of the pinned interface� which in both cases is the path of the bond
directed percolation of diodes on the dual lattice �shown on Fig�

Fig� �� Two successive snapshots of the interface of Model A still evolving near its pinning threshold
�p�������
� System size is ���� but the calculation are made for L 
 ���� Upper snapshot taken at
t � 
����� lower at t � 
����� Yellow color indicates wet area� blue color indicates dry area� red
color indicates �live! columns� i� e� columns that contain cells which become wet at the current time
step� Arrows show the direction of the propagation of steep eroding slopes� which has approximately
equal horizontal and vertical dimensions both of the order of 
�� The horizontal dimension of the
long blocked region is of the order of 
k� while its vertical dimension is of the order of 
��

Fig� �� Successive series of pinned interfaces of Model A� showing the boundaries of avalanches�
produced by removing a randomly�chosen blocked cell from the previously�pinned interface� L �
���� p � ��� � pc� Correlation lengths 
k and 
� are the typical sizes of the avalanches�
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Fig� �� Horizontal projection of the cluster of Model B �p � ������ � pc
 which was started at
the center of the screen ��� time steps ago� The current diameter of the cluster is about ���� Blue
area shows �at interface that left dry since the beginning of the process� Darkest shades of gray
corresponds to the largest heights of the interface� Red dots forming �fractal dust! indicate cells
that become wet at the current time step�

Fig� 	� A �nite diode�resistor cluster of size s � � on the Cayley tree with coordinational number
zc � �� The initial site is marked by a larger circle� Sites are arranged vertically according to the
number of the level they belong to� The lowest level has the number equal to zero� In order to
illustrate the concept of a branch� we show several examples of branches of various sizes s outgoing
from sites at di�erent levels i� These branches are indicated by arcs and probabilities Fi�s
� Hi�s
�
For example� the right branch that is connected to the site at level i � � from below consist of
s � � sites� Diodes that are connected to the cluster by their lower end only represent surface that
stops percolation� These diodes are considered to be upper branches of zero mass� which always
have probability Fi��
 � p� Note that only 	 resistors �not � as shown
 are necessary to create this
cluster�
Table �� Critical Exponents and Percolation Thresholds pAc � p

B
c � p

C
c � for Models A�B�

and C

d 
 � 
 � � 
 	 � 
 � � 
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 ����� ���	 ��	�� ���� ����� ����
� ���	� ���
 ���
� ���� ����� ���	 ��
�� ���	
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��
� ���� 
�
�� ���	 
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���� ��
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�surv 
���� ���� ��
�� ���	 ����� ���� 	���� ����
� ����� ���	 
�
�� ���� 
��� ��
 
��� ���
pAc ������� ������ �����	� ������ �����	� ������ ������ ������
pBc ���	��� ������ ������� ������ ������� ������ ������� ������
pCc ������� �����
 ���	��� �����	 �����	� ������ ������� ������
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