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We study biased diffusion on a topological random comb with an exponential distribution of
dangling ends which is relevant to the essential physics of biased diffusion in random structures
such as percolation systems above criticality. By mapping the problem onto a linear chain with a
power-law distribution of transition rates we find that above a bias threshold, diffusion is
anomalous in two respects: d, (the fractal dimension of a random walk) is above 1, and depends
continuously upon the magnitude of the bias. Our analytic results are confirmed by extensive

computer simulations.

How are the laws of transport changed when the system
of interest is not uniform but random? This physics ques-
tion of general interest has recently attracted researchers
in various scientific disciplines; the spectrum ranges from
intercalation fronts in solids and oil extraction from po-
rous rocks to the physics of aggregates and amorphous
materials.!~*

In this Brief Report, we study the effect of a constant
bias field on the diffusion properties in random systems.
We consider a topological variant of the random comb
model that encompasses essential features of random
structures, yet is simple enough to be treated rigorously
and thus is able to display the richness of the problem. In
this model, a “pressure” source at one point of the random
medium gives rise to a ‘“topological” bias rather than a
“Pythagorean” bias (see Fig. 1). While much progress

(a) (b)

FIG. 1. Comparison between (a) Pythagorean bias and (b)
“topological” bias for a simple structure. The pressure source is
at A. In (b), every point in the flow experiences a field E to
“move away” in chemical distance (or path length) from the ori-
gin. The arrows denote the direction of the local bias in each
bond.

has occurred recently in understanding the physics of non-
biased diffusion in random structures,>™® the physics of
biased diffusion is not yet understood.!%"!” Here we study
analytically and numerically the mean length /(z) of the
path (chemical distance) a random walker travels in time ¢
on the random structure under the influence of a topologi-
cal bias field. By mapping this problem to the problem of
biased diffusion on a linear chain with a power-law distri-
bution of transition rates we find that the results for the
diffusion exponent d/, defined by

1 ~1% 1)

are significantly different from unbiased diffusion in ran-
dom media, and also are different from biased diffusion in
a Euclidean network.

In contrast to biased diffusion on a uniform Euclidean
network, where even the slightest field changes d’, from 2
to 1, there exists a critical bias field E=E.. We find that
below E., d! has the constant value d. =1, but for
E > E,., d, increases continuously with E. Our results
concern the following model, which is a topological variant
of the random comb structure (Fig. 2). Choose two points
A and B at random on this structure, one of which (4)
shall be the source of a bias field. Consider now the
minimum path between 4 and B, from which emanate
many dangling ends of all possible sizes and shapes. The
length L of each dangling end is a random variable chosen
from the distribution function

Po(L)xAl=e 0L | )

where 0 <A <1 is a tunable parameter. Our choice for
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FIG. 2. Typical random structure considered in this work.
Two points 4 and B are chosen at random and a pressure field is
applied at one of them (4). The bonds on the minimum path be-
tween 4 and B are termed the backbone, while the remaining
bonds constitute the dangling ends. In our model, the length L of
each dangling end is chosen from the probability distribution

).

the distribution (2) is motivated by the distribution of
dead ends in percolation (for p > p.) which is believed to
have an exponential behavior on large length scales. Of
course, the incipient infinite cluster in percolation—a
standard model for porous media— has loops in the back-
bone and loops and branches in the dangling ends. How-
ever, we shall argue below that such features do not affect
our results, and we believe our model reflects much of the
essential physics of biased diffusion in random media.

The topological bias is introduced as follows: Every
bond experiences the (constant) topological bias field E
which drives the walker away from the source. Con-
sequently, the walker has an enhanced probability
p+<=(1+E) that the next step increases the topological
path length to the source, and a decreased probability
p-«<(1—E) that the next step decreases the topological
path length to the source (Fig. 1). Note that for a topolog-
ical bias (in contrast to a Pythagorean bias), the random
comb is similar to a percolation cluster above p,, since for
both structures the topological bias drives a random walk-
er toward the tips of the dangling ends.

Our goal is to calculate transport along the backbone
from A to B, which is an effective one-dimensional system.
The physical effect of a set of dangling ends is to provide a
set of random delays along the backbone, each with a
characteristic time 7(L). To calculate 7(L), we consider a
walker on a dangling end of length L at a chemical dis-
tance j from the backbone. Let T; be the mean first time
to reach the backbone and note that Tj«<z. It can be
shown!® that 7 satisfies the recursion relation

T,— 1=+ —E)Tj ++U+E)Tj4, (3a)
subject to the boundary conditions'®
Tj—o-o, TL-TL_1+2/(1—E) , (3b)

since j=0 and j=L are “absorbing” and ‘“reflecting”
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points, respectively. We solve for 7| with the result

L
1+E
1—FE

1
T]"—E—,

- 1] . (4a)

The behavior is dominated by the long dangling ends, so
we consider the asymptotic limit (see also Ref. 12)

L
1+E

~T~ T=£ | rL>1). (4b)

The transition rate W (L) to pass by this dangling end (on
the backbone) is given by the reciprocal of the mean time
7(L) spent in a dangling end of length L. Hence from

(4b),
L

—E| - )

w(L)~ 1+E

The rates W(L) are random variables whose probability
distribution P(W) is directly related to the distribution
Po(L) for finding a dangling end of length L. Since
P(W)=Po(L)dL/dW we obtain from (2) and (5) that
P(W) follows a power law distribution

PW)~w™*e 6)
where
a=1—b/c=1—1nA/Inl01 —E)/U+E)] .

By this, the problem of biased diffusion on the random
comb structure is mapped rigorously to the problem of
biased diffusion on a linear chain with a power-law distri-
bution of transition rates, Eq. (6).

Now consider the effect of this transition rate distribu-
tion on biased diffusion. Hence we consider the time 745
to walk from A to B under the influence of the bias field

Nas Ny
tap~ Y, T~ Z— . @)
i=1 i=1
Here the sum runs over all the V45 dangling ends which
emanate from the backbone between 4 and B. Note that
in our model N 45 is proportional to the length /45 of the
path between both points. From (6) and (7) we obtain
(see also Ref. 20)

tap~lap f W

This result holds for @ > 0 when the integral is dominated
by the lower integration limit. For a =<0, we recover the
result for uniform Euclidean lattices ¢ 45 ~/4p With a loga-
rithmic correction when a=0. Since Wp;, depends on /4p

viaZ! Wpin~Lg/" ™

P(W)~IABW.;,,, . (8)

. Lo
, we obtain 745 --1,f§, with

1+—2%— 0<a<1,
dl= l1—a @ )

1, a<0 .

We have also considered a somewhat different model in
which the topological bias is not operative along the back-
bone bonds. Following a similar approach, we have calcu-
lated the conductivity T between 4 and B. Using the Ein-
stein relation D ~1[ 43X between X and the diffusion con-
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stant D ~13g /t 48, we find

2+4—2 0<a<l1,
- 1—a

2, a<O0.

d’, (10)

The results for both models can be summarized as follows:

ag, E<E.Q),

In[(1 —E)/(1+E)]
InA

d., (11a)

dy+

-1, E>E. (),

where d? is the diffusion exponent in the absence of dan-

gling ends. The critical topological bias field, correspond-

ing to a =0, is given by (see also, Refs. 10 and 12)
1—2

EQ)=—7—.

11b
1+2 (11b)

Equations (11a) and (11b) represent the main results of
this Brief Report. To test them, we have performed exten-
sive numerical studies of biased diffusion on a topological-
ly random comb. We have used the exact enumeration
method, which provides excellent statistics in other prob-
lems.®?2 We calculated the diffusion exponent d’, for a
range of bias fields E and for different distributions of the
dangling ends [characterized by the parameter A of Eq.
(2)]. Results for three values of A are shown in Fig. 3.
The curves for A=+ and 4 are for the present model,
while the curve for A =% is for the second model in which
there is no topological bias along the backbone bonds. The
agreement shown is striking, particularly in view of the
fact that there are no adjustable parameters in the theoret-
ical expression.

In summary, then, we have obtained an analytic expres-
sion for the diffusion exponent d/, for a system designed to
mimic biased transport in random media, such as those
modeled by percolation theory. The diffusion exponent d,
“sticks” at its uniform Euclidean value for all values of E
up to a bias threshold E=E,. Above E,, d!, increases con-
tinuously with the bias field E, becoming infinite only as
E — 1. Thus a particle is completely “trapped” only in
the limit of perfect bias (E=1). A second trapping limit
is when A— 1, which represents the case (L)— oo, This
result explains Stauffer’s recent finding'® that d,,— o for
percolation at criticality, where dangling ends have
(L)=oo. The dangling ends of our model (Fig. 2) have no
loops or branches, in contrast to real random media. How-
ever, we can argue that for a topological bias loops and
branchings can be taken into account by assigning an ef-
fective mean length L for the dangling ends. In percola-
tion, L.g depends only on the concentration of the random
material and decreases with increasing p. For each con-
centration p, we expect, therefore, that d’, increases with
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FIG. 3. Dependence on bias “topological” parameter E of the
departure of dy, from its value for an unbiased system. The curve
A=+ and + (0 and x) for the present model, while the curve for
A==2(+) is for the second model in which there is no topologi-
cal bias along the backbone bonds.

the bias field E in the predicted way, Eqgs. (11), where
1/InA has to be replaced by L now. Accordingly, even
though our rigorous results for the diffusion exponent are
for an idealized model of random media, they also describe
the physical situation in the more realistic percolation
model, which so far could not be solved exactly.?3

The interesting feature of our result is that a critical ex-
ponent (the diffusion exponent d/,) is independent of a sys-
tem parameter (the bias field E) over a wide range of E
values. Specifically, d, sticks at its classical value d, =1
(a Euclidean lattice) for all E less than a critical bias E,
and then varies continuously with E for E > E.. The anal-
ogy with exponents in critical phenomena is immensely in-
triguing: Critical exponents are independent of a system
parameter (the lattice dimension d) for a wide range of d
values. Specifically, they stick at the classical values (the
mean field theory) for all 4 above a critical dimension 4,
and then vary continuously with d for d <d,. This subtle
parallel is the object of present study. A second analogy is
with the dynamic phase transition?* that occurs when the
motion of random walkers in external potentials is studied
where the height of the barrier has an exponential
distribution. In this case, the system parameter is the
temperature.
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