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Abstrwt. We study a model for layered porous media. The model is a d-dimensional lattice 
percolation system with different concentrations given to different layers. We find for the 
ZD Site percolation system, a Critical line on which the percolation clusters are anisotropic 
and characterized by two different correlation length exponents. Our results suggest that 
due to the introduction of long-range correlations one obtains a new universalily class 
6iffewni from isotiopii percolation and irom directed pei~oistion. 

The percolation model has been studied very extensively in recent years [l-41. In 
particular, percolation has proved to be a useful model for many realizations of 
discovered systems. Most of the studies have focused on isotropic percolation systems. 
However, in general, disordered systems in nature are  anisotropic, such as layered 
porous rocks [SI. In this paper we suggest a percolation model for anisotropic multi- 
layered porous media in which different layers may have different physical properties 
such as density and porosity. For that model we suggest a general anisotropic scaling 
theory to describe its critical behaviour. Numerical data from two different simulations 
support the predictions of the scaling theory. 

In order to model a multi-layered percolation system, we assume a d-dimensional 
lattice constructed of a sequence of many sublattices, each with d - 1 dimensions along 
a predefined axis. We shall call such a sublattice, a layer, and choose the predefined 
axis as they  axis. Each layer is a simple ( d  - 1)-dimensional percolation with a unique 
concentration. This corresponds to the fact that multi-layered systems in nature may 
have different physical parameters at different layers. For simplicity, we study here the 
case of d = 2, and only two concentration values, p ,  and p 2 ,  are assumed. Let p ( y )  be 
the concentration of a layer in t h e y  coordinate, and let p(y) be independent random 
variables distributed according to: P r ( p ( y )  = p , )  = Pr( p ( y )  = p 2 )  =;. The parameters 
p ,  and p2 define a point in a phase space. In this phase space the line p I  = p2 corresponds 
to the set of regular isotropic percolations, while the other points describe systems 
with anisotropic clusters. It is important to note that although the choice of the 
oismouuun U, p l y ,  IS aru~aty, I I  15 riirpu~~arir LV ~ V C  a ruiiuvm U ~ D L ~ W U L L W ~  U, p l y ,  
and not a periodic one. If, for example, we choose p ( y )  = p ,  if y is even and p ( y )  = p2 
if y is odd, then one obtains a model with no singular anisotropy and A is just a 
marginal perturbation. We shall call that model the 'alternating' model compared with 
our 'random' model. The random layer model has also been presented by Obukhov [6]. 

We find it  more convenient to define p and A by p ,  = p -  A and p 2 = p +  A rather 
than p ,  and p z .  Thus, as we increase A from 0, we find that anisotropic clusters become 
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extended along the x axis and narrowed along the y axis. (This behaviour is common 
both to the 'alternating' and the 'random' models, but we shall see that only in the 
latter are the critical exponents affected by the anisotropy.) The parameter A may be 
understood as a measure for the amount of anisotropy in the system. The anisotropic 
clusters in the 'random' systems are found to be characterized by two different correla- 
tion lengths 6, and t,,, with two different exponents ux # U,,, resulting in self-affine 
cluster structures 171. 

It is well known that for A = O  there is a phase transition along the @ axis [I]. 
Exactly at p = p c  an infinite cluster appears as @ increases. We therefore assume that 
for every value of A there exists a unique critical value of p, Is,(A). This assumption 
is supported numerically and @=(A) is found. It is also well known that all the critical 
behaviour of an isotropic percolation system can be described by two exponents such 
as U and p. All other exponents such as T, 7: are related to p and v. In the following 
we have generalized the relations between these exponents for anisotropic systems. 

In the following we present a scaling approach Cor a general anisotropic d- 
dimensional percolation system. We assume that every axis has its own unique correla- 
tion exponent, i.e. 5,- (p -pcI -" ' .  Therefore, the typical 'volume' of a cluster in such 
a percolation can be expressed as 

Similarly, we define d y '  as the exponent characterizing the typical 'mass' of a cluster 
s ( f )  = 64'" for 1 S i S d. Generalizing from the isotropic case, we assume that the 
probability of an arbitrary site to belong to a cluster with linear sizes: C,, &, . . . , (,, is: 

Q ( ~ ~ ) - s ( F ) ' - ' F ( - l p - p , l ' ' " .  sCF) ) .  (1) 

Then, using scaling arguments (such as conservation of V .  Q while changing p to p ' ) ,  
we get the following rule: 

u,dl."cr= 1. (20) 

In the isotropic case we have T = 1 + d/  d, 
pU = 7-2.  ( 2 c )  

This law comes from the definition of Pm- Ip-pC-/'. In the isotropic case this law has 
the common form: d,= d - @ / U .  Note that the equivalent formula for the anisotropic 
case for d = 2 is d ;  = ( 1  + uv/ U,) - p / u x .  Note also that a similar equation to (26) was 
found for directed percolation [8]. 

In this paper we present numerical data to test if the two-dimensional 'random' 
modei behaves according io the generai ruies rcsuiiing from ihese scaiiiig arguiiienis. 
The numerical simulations are performed using two methods: the 'gradient percolation' 
method and the 'cluster perimeter' method. Before describing the methods we define 
the term 'perimeter' which is necessary to the understanding of both methods, and 
find its critical behaviour using similar scaling arguments. 

The perimeter of a cluster is the continuous path of occupied sites on its boundary. 
The perimeter can be either intemal or external to the cluster. It was shown by Sapoval 
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er al [9] that such perimeters are useful to study percolation systems. They found that 
the fractal dimension of the perimeter of an isotropic percolation dH is related to the 
correlation length exponent Y by d, = 1 + l / u .  It is easy to see that the relations (2) 
are valid not only for the mass of the clusters but also for their perimeters (replacing 
dr by d H ,  etc). Thus, in the following we shall use the exponents pH. rU, uH and d;’, 
to denote exponents characterizing the perimeter, and the analogue for (2) is 

vjdb’vu = 1 ( 3 a )  

( 3 6 )  

PHuH = r H - 2 .  ( 3 c )  

” 1  
r H = l +  1 - d(’1 

i = l  H 
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model. Thus percolation properties can be studied directly from the perimeter. This 
fact is very important for simulations purposes, since the perimeter can be simulated 
much easier than the total mass of the cluster. 

The ‘gradient percolation’ method [9] consists of studying the properties of the 
clusters and the cluster perimeters in the presence of a constant gradient of concentra- 
tion along one direction z (here x or y). An ‘infinite’ cluster exists in the high- 
concentration region p > p c .  This infinite cluster has a frontier located in the region 
of concentration pc. This frontier has a width w,  which depends on the gradient of 
concentration Q p  through a power-law behaviour of- IVpl-”“+”’. 

At distances shorter than or the frontier is similar to the hull of the infinite 
percolating cluster and has a fractal dimension: d, = 1 + 1 / u .  This approach is used 
here to deiermine p,(Aj and u ; ( A )  (or db!(Ajj. A gradieni of cunceniraiion, Op, is 
superimposed on the multi-layered structure, along one of the two directions z = x or 
z =y. When z is along x, the width is expected to vary as w,-IVpl ‘”~”’+”~’ ,  while 
when z is along y the width is expected to vary as o , - l V p l - ” ~ ’ “ + ” ~ ’  . The number of 
sites Nr on the frontier also presents a power-law behaviour of wr (and therefore of 
the gradient) Nr- o:~-’. In practice, it is convenient to count the number of occupied 
sites on the front NrA and the empty sites N,,, which are nearest neighbours of these 
occupied front sites, in order to get a precise method of calculating p c :  p c ( V p )  = 
NrA/(Nm + NrH) and p,(O) = p c .  In the anisotropic case we have to take care that now 
the critical concentrations have to be calculated separately in both kinds of layers: 
p ( “ ( V p )  = Npi / (  N:i+ NPi) for i = 1 or 2. We use this method here to determine &. 
In the present calculations, the ‘gradient percolation’ approach is nevertheless limited 
to values A < 0.25. This is due to the fact that for large anisotropy, a too-small value 
of the gradient is needed to avoid the frontier reaching a concentration of p = 1, in 
which case the method would become inaccurate. 

In the ’cluster perimeter’ method [lo] the algorithm simulates the perimeter of a 
random cluster as if it was a self-avoiding walk, ignoring all sites that are not adjacent 
to the perimeter, which saves much computation time. Using a similar algorithm to 
that developed by Ziff er a1 [ l l ]  and a dynamic memory allocation method, one can 
simulate very large and very anisotropic clusters almost without any finite lattice size 
effects (which is crucial in the present model). 

In order to find the phase diagram @=(A) we have used a modified version of the 
method used by Ziff [12] to find pc  with high accuracy. The main idea is that at the 
critical point there is an equal probability for an arbitrary perimeter of a large cluster 
to be either internal or external. Let R ( A , @ )  denote the ratio between the number of 
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extemal and internal perimeters, at the point (A, p) in the phase space. For a given 
fixed value of A we have calculated R(A, p) for several values of j7, and extrapolated 
(using linear regression) the value of j c  such that R(A, pc) = 1. The phase diagram 
A(&) for anisotropic percolation is shown in figure 1. It is seen that a critical line 
separates the phase space into two regimes, A and B. Regime A contains systems with 
only finite clusters while B contains systems with infinite cluster in agreement with 
what is known about the line A = 0 (isotropic percolation). Both the ‘gradient percola- 
tion’ and the ‘ciuster perimeter’ methods gave the same resuits (for ir<A<0.25)  with 
a precision of three digits (see [l l]  and [I21 for a discussion about the accuracy of 
the ’cluster perimeter’ method). 

- 
‘05 052 054 056 058 

P C  

Figure 1. Phase diagram A(&) for m multi-layered percolation. 

We have also checked the ‘alternating’ percolation model and found that pc(A) is 
smaller than that of the ‘random’ model. Yet it is clear that two points in the phase 
space are common to the two models, namely (A = 0, p = p.) and (A = 0.5, p = OS). 

We EGW p:e:ent resc!!s desc:ibi-g tkn p:epert!es oftke a~isntropic c!ssters 011 the 
critical line. This is done by estimating the correlation length exponents in the x and 
ydirectionsindependently. Let(X(n))denotethe~~~estimationofX(r+n - 1)-X(r) 
where X (  r )  is the x coordinate of the perimeter after t steps from its (arbitrary) origin. 
We expect that ( X ( n ) ) - n ” .  and ( Y ( n ) ) - n ” ,  where C i = l / d g ’ = u H .  vi. We have 
calculated U, using a linear regression of log ( ( X ( n ) ) )  against log(n), where the ( X ( n ) )  
measurements were taken from very large and open (i.e. that have not been closed) 
perimeters [12]. The same procedure was repeated to estimate Cy. The values of V ,  
and Cy measured on the critical line as a function of A, are shown in figure 2. Again, 
in the range of A available in the ‘gradient percolation’ method, the two methods gave 
similar results. When these measurements were taken on the ‘alternating’ model, both 
Vx and V ,  were varying in the range 0.572+0.004 for a wide range of A (0 .1 , .  . . ,0.4). 
This resn!! is in  excel!ent agreement with the isotropic value of d l =  1.75 = 1!0.571 . . . 
and demonstrates the sensitivity of our measurements to the anisotropy in the ‘random’ 
model. 

Another feature that emerges from figure 2 is the finite-size effect for the size of 
the perimeter being analysed. As mentioned above, we do npt take finite closed 
perimeters into account but only parts of the perimeter of the infinite cluster. Since 
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Figure 2. Measured values of the exponents Gx and Cy as a function of A for differenl 
r a n g e ~ ~ r n :  ~ - ~ o o o ~ ~ ) , ~ - ~ o o o ~ ( ~ ) , ~ - ~ o o ~ o o ( + ) .  

this is impossible, we truncate the perimeter after n (of the order of lo6) steps. It is 
seen from figure 2 that for different regimes of n, different values of V, and V,, are 
estimated, such that 5, tends to increase and Vv tends to decrease as n increases. This 
suggests that for any A >  0, U, and U, will approach asymptotically the values obtained 
for A approaching f. 

Moreover as seen in figure 2, Cx and U? tend to some constant values as A increases. 
Thus we assume that Vr(A+O,n)=V,Cx(A+$, n)=Cl l  and Vx(O<A<~,n+m)=Vl l  
and similarly for V,,). 

In order to test this assumption we will try to describe (X(A, n ) )  by a single scaling 
function: 

(X(A, nj) = n’&(A). n ) .  (4) 

with Z7 = l/dr= 4/7. A similar scaling law will be assumed for ( Y ( A ,  n ) ) .  In order to 
get theabove properties of &(A, n ) ,  we expect&(u+O)=constant,f,(~+coj-u~n-‘, 
gx(A + 0 )  = 0 and also g,(A+ f )  = W. Similarly, we define f ,  and g,. Using numerical 
fitting methods, we have found a function gJA) such that all the measured points of 
(X(A, n ) )  collapse to a single line which corresponds to & in (4). Figure 3 shows 
log(f) as a function of log(n. g(A)). It is interesting to note that all the points of 
(X(A, n ) )  measured for different values of A and n on the critical line, show an excellent 
agreement with a single scaling function. It can be seen that as log(n. g(A)) + -m (i.e. 
as n ’ g(A) -* 0), log(f) + constant, while in the other regime, when log(n. g(A)) + co, 
log(fj is a linear function. From this linearity one can derive Fll and CL using the 
relations: 

log(f)-(Vii-~)log(n.g(A)) ( 5 0 )  

l o g ( f , ) - ( J , - Z 7 ) l o g ( n . g ( A ) ) .  (5b) 

From the asymptotic slopes of log(f) and log(f,) we obtain YII=0.94f0.01 and 
PL =O.ZlrtO.Ol. If we assume that the exponent 7” in the anisotropic system has the 
same value as the isotropic one, namely T H = ~ ,  then one can see that ( 3 b )  is satisfied 
with 1% accuracy. 
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Figure 3. The scaling functions (Sa) and ( 5 b ) .  The upper C U N ~  

the lower curve (v) log(/!). The values of G, and cl1 are ob! 
slopes of these C U W ~ S  

) represents log(/,), an 
e d  from the asymptoti 

To check this assumption about T ~ ,  we measure T~ directly using the cluster size 
distribution n , ( p ) - s - ' " .  exp(-lp -pcll '"~. s), where s is the cluster size (length of 
the perimeter) and p is the percolation concentration. We assume that n. of our 
anisotropic model behaves as SKIM on the critical line. It has been shown [ l l ]  that it 
is much more accurate to estimate T~ from the number of clusters that are greater than s: 

( 6 )  

From the calculated values of N,,  T~ is estimated using linear regression, log(N,) = 
( l - ~ ~ )  log(s)+constant. Figure 4 shows some values of that were calculated on 
the critical line using both equations (6) and (3b) .  For the former it is seen that the 
numerical values found for 7" are within 2% of the isotropic value ?. However, there 
seems to be a systematic deviation which might be attributed to the fact that we do 
not measure exactly on the critical line. This needs to be checked in the future. 

N ,  - Jsm x-r" d x  - S'-'H, 

A 
Figure 4. Plot of 
The line represents the isotropic value 

as a function of A found directly using (6) ( A )  and using ( 3 b )  (v). 
=?. 
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In order to estimate the correlation length exponents vL and uII we assume that, 
similar to r H ,  uH is also not affected by anisotropy. Substituting gH=$ in ( 3 0 )  we 
conclude that q=2.19*0.02and v,=0.49+0.02 whichsuggest that v l l = y a n d  U,=+. 
These values differ significantly from the values obtained for directed percolation [81. 

It has been shown here that even a small anisotropy introduced by any finite A 
results in long-range correlations. These correlations introduce anisotropic clusters 
with fractal dimensions: d6(=1!Ci) and d?,(=l/$.  The structure of the cluster is 
therefore self-affine and not self-similar as in isotropic percolation. 

However, our numerical data suggests that the exponent rH has the same value for 
the anisotropic percolation as for the ordinary isotropic one. Thus, expressing rH as 
l + d / d w  and substituting into ( 3 b ) ,  it follows that 

1 I d  1 
dH d i = l  d$" - I- 

Our direct measurements of di: and d $  also support this conjecture. 
Assuming the validity of (7), it follows that ford = 2, dh and dh are not independent 

and represent only one degree of freedom. Thus, similar to the isotropic case, the 
anisotropic model is characterized by only two independent critical exponents. 

!t is interesticg ta campire OK res~!ts with !hose argued by Obckhav [?j. His 
conclusions for layered percolation are: ( a )  the critical line &(A) is linear and ( b )  the 
transition is of infinite order. Our numerical results do not support any of these 
conclusions, as seen from figure 1, &,(A) is not linear and our support of the scaling 
function (1) and the hyperscaling relation (2) suggest a second-order transition. 
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