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Abstract 

We review recent developments in the study of the diffusion reaction systems of the type 
A + B ~ C in which the reactants are initially separated. We consider the case where the A and 
B particles are initially placed uniformly in Euclidean space at x > 0 and x < 0, respectively. 
We find that whereas for d /> 2 the mean field exponent characterizes the width of the reaction 
zone, fluctuations are relevant in the one-dimensional system. We present analytical and numerical 
results for the reaction rate on fractals and percolation systems at criticality. We also study the case 
where the particles are L6vy flights in d = I. Finally, we consider experimentally, analytically, 
and numerically the reaction A + Bstatic --~ C ,  where species A diffuses from a localized source. 

1. Introduct ion 

The dynamics of  diffusion controlled reactions of  the type A + B  --* C has been studied 

extensively since the pioneering work of  Smoluchowski [ 1,2]. Most studies have focused 

on homogeneous systems, i.e. when both reactants are initially uniformly mixed in a 

d-dimensional  space, and interesting theoretical results have been obtained. When the 

concentrations of  the A and B reactants are initially equal, i.e. ca (0)  = c8 (0)  = c ( 0 ) ,  the 

concentration of  both species is found to decay with time as, c ( t )  ~ t - d /4  for Euclidean 

d ~< 4 dimensional systems [3 -10]  and as c ( t )  ~ t -~-#4 for fractals [5,6] with fracton 

dimension d~ <~ 2. Also,  self-segregated regions of  A and B in low dimensions ( d  ~< 

3) ]4] and in fractals [9] have been found. Quantities such as the distributions of  

domain sizes of  segregated regions and interparticle distances between species of  the 

same type and different types have been calculated [ 11-13] .  These systems were also 

studied theoretically and numerically under steady state conditions and several interesting 
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predictions have been obtained [14-17]. However, the above numerical and theoretical 
predictions have not been observed in experiments, in part because of difficulties to 

implement the initially uniformly-mixed distribution of reactants. 
In recent years it was realized that diffusion reaction systems in which the reactants are 

initially separated [ 18] can be studied experimentally [ 19,20] and that the dynamics of 

such a system have many surprising features [20-27]. These systems are characterized 
by the presence of a dynamical interface or a front that separates the reactants. Such a 

reaction front appears in many biological, chemical and physical processes [28-34].  
G?alfi and Rhcz [ 18] studied the diffusion-controlled reaction system with initially 

separated reactants. They studied the kinetics of the reaction diffusion process using a 

set of mean-field (MF) type equations, 

aCA ~ a2ca 
- -  ~- LI A ~ kCACB, ( 1 a) 
Ot 

a2CB 
aCB = DB -- kCACB. ( lb )  
at 

Here CA -- C a ( X , t )  and cB =- cB(X,  t) are the concentrations of A and B particles at 
position x at time t respectively, DA,B are the diffusion constants and k is the reaction 

constant. The rate of production of the C-particles at site x and time t, which we call 

the reaction-front profile, is given by R ( x ,  t) =_ kCACB. The initial conditions are that 
the A species are uniformly distributed on the right-hand side of x = 0 and the B species 

are uniformly distributed on the left-hand side. 

Using scaling arguments, Ghlfi and Rhcz [ 18] find that the width w of the reaction 
front R ( x ,  t)  scales with time as, w ~ t '~ with o~ = 1/6 and the reaction rate at the 

center of the front, which is called the reaction height, scales as h ,-~ t -~  with fl = 2/3. 

Experiments [19] and simulations [19,21-24] for d ~> 2 systems in which both 

reactants diffuse, support the above predicted values for tr and ft. Indeed, Cornell et 

al. [23] argue that the upper critical dimension is d = 2 and the MF approach should 
therefore be valid for d ~> 2. Moreover, numerical simulations of 1D systems show 
that the width exponent appears to be tr ~_ 0.3 and the height exponent fl _~ 0.8 

[23,24]. Recently [25] it was argued that a varies between 1/4 and 3/8, depending 
on the moment at which the width is calculated. For controversial discussions about the 
existence of multiscaling, see Refs. [35-39]. The origin of the difference between the 
exponents of 1D systems and those of higher dimensional systems is due to fluctuations 
in the location of the front which are important in low dimensions and are neglected in 
the MF approach. 

Taitelbaum et al. [20,22] studied analytically Eqs. (1) and presented experiments 
for the limit of small reaction constant or short time. The main results are that several 
measurable quantities undergo interesting crossovers. For example, the global reaction 
rate changes from t 1/2 in the short time limit to t -1/2 at the asymptotic time regime. 
The center of the front can change its direction of motion as found in experiments [20]. 
Ben-Naim and Redner [26] studied the solution of (1) under steady-state conditions. 
A persistence model of Eq. (1) was recently studied by Vilensky et al. [40]. 
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Fig. 1. Schematic picture of the reactant concentration profiles near the origin. The solid lines represent the 
Gi.2 (x, t) part of the profile, the dashed lines represent the complete form G12 (x, t) :t: 6c(x, t). Note that 
the profile of species A is given solely by ~c(x, t) on the left of the origin. (From Ref. [27].) 

2. The fo rm of  the reaction front,  R(x ,  t), in the mean-field approach  

In a recent work [27] ,  we consider the symmetric case in which both diffusion 

constants and initial concentrations are equal, i.e. DA = DB = D and CA(x,O) = 

CB(x,O) = CO. If  we define F(x ,  t) - CA(X, t) -- Cs(X, t),  then from Eq. ( 1 ) tbllows 

OF 02F 
- -  = D - -  ( 2 )  
c)t c)x 2 ' 

subject to the conditions that initially the A particles are uniformly distributed to the 

right of  the origin while the B particles are uniformly distributed to the left of  the origin. 

Eq. (2) has the solution F ( x ,  t) = co erf(x/4v/-4D~). 

We rewrite the concentrations of  A and B particles as (see Fig. 1) 

CA(X,t) = G l ( x , t )  + S c ~ ( x , t ) ,  c s ( x , t )  = G 2 ( x , t )  + 6 c 2 ( x , t ) ,  (3) 

where 

F ( x , t )  [ x > 0 ] ,  (4) 
G t ( x , t )  = 0 I x < 0 ] ,  

and GZ(X, t) = GI ( - x ,  t ) .  It is easy to see that under the above conditions, 8cx (x, t) = 

6c2(x , t )  =-(3c(x, t) .  Substituting Eqs. (3) into Eqs. (1) yields 

c)(6c)c)t -DC92(¢3c--~)Ox 2 k (c0 e r f ( @ ~ ) + 6 c ) ~ c .  (5) 

The asymptotic solution for this equation that vanishes as x --, oc is 

(~C(X,t) r,o , -1 /3  ( X "~ -1/4 [ ~ ("~X~ 3/2] ,1/6 
\ t l / 6 j  exp - \t~Tg j j , << x << (4Dt)  1/?, (6) 

where A = ( k a / D )  1/3, a =-- c o / ( ~ D )  1/2. As may be confirmed by direct substitution, 

this expression is a solution of  Eq. (5) up to terms of  order (Sc ) / t ,  which can be 

neglected for large t. 
Using Eq. (6) we can write an expression for the reaction-front profile R(x ,  t) defined 

in (1) as 
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kax t_2/31" x ~3/4 [ 2 { Ax "~ 3/2] 
R(x,t) ~- t-~(Sc),'~ ~t-~) exp - 3  \ t - T ~ J  ] "  (7) 

It is seen that the width of  the reaction front grows as t 1/6, whereas the height can be 

identified with the prefactor t -2/3 in Eq. (7) ,  consistent with the exponents found by 

Ghlfi and Rhcz [ 18]. Eq. (7)  provides a more quantitative solution of Eqs. (1) than 
the previous scaling arguments [ 18], as well as information on the dependence of  the 

form of  the reaction front on the parameters co, k, and D, for the symmetric case. 

For the case in which one reactant is static no analytical solution (o f  Eq. (1) ) exists 
for the form of  the reaction-front profile. However, numerical solutions of  Eq. ( 1 ) with 

DB = 0 shown in Fig. 2, suggest that R(x',t) ,.~ t-I~g(x'/U)exp(-[x'l/t~'), where 
x ~ =_- x - y t  1/2. The excellent scaling in Fig. 2b suggests that the width does not increase 

with time, i.e. w ~ t ~ with a = 0 and h ,-~ t -¢~ with fl = 1/2, consistent with the scaling 

arguments in Ref. [21 ]. 

3. The  front  R(x, t) in d = 1 

The reaction-front profile in d = 1 systems, R(x, t) ,  when both reactants are diffusing 

with the same diffusion constant, DA = D~ ~ O, has been calculated numerically [24].  

The data shown in Fig. 3 suggests that 

t 

cc(x, t)  - f R(x,t ')dt '  
o 

..~ exp( -a]xl / t=) , (8) 

with a = 0.33 -4- 0.05. 
For the c a s e  DA 4 = 0,  DB = 0, analytical and numerical studies [41 ] yield for the 

reaction-front profile 

1 ( ~ 2 ) ' / 2 e x p ( ( x - y t l / 2 ) 2 )  ( x - - y t l / 2 )  
R(x, t) = 4 ~  2-/zt-~ 1 + 2ytl/2 j ,  (9) 

where y and /z are constants. From Eq. (9) it follows that a = 1/4 and fl = 3/4.  It is 
interesting to note that the time integral of  R(x, t), which is the total production of  the 
C particles at x up to time t, is given by 

t 

cc (x, t) = / R(x, "r)dT 
0 

=lerfc ( X -  ytl/2 ~ (1o) 

To summarize the case of  A ÷ B ~ C with initially separated reactants, we list in Table 

1 the four sets of  exponents discussed above. 
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Fig. 2. Numerical solution of Eq. ( 1 ) for the case D B = O, D A 4= O: (a) plot of c (x ,  t) as a function of x 
for t = 500, lO00 and 5000; (b) the scaling plot of c ( x , t )  as a function of (x - (x)) indicates that o~ = 0 
and fl = 1/2. 

4 .  T h e  r e a c t i o n  r a t e  o n  p e r c o l a t i o n  c l u s t e r s  

T h e  c a s e  o f  A + B --~ C w i t h  i n i t i a l l y  s e p a r a t e d  r e a c t a n t s  o n  f rac ta l  s y s t e m s  w a s  

s t u d i e d  o n  t h e  d = 2 i n f i n i t e  p e r c o l a t i o n  c l u s t e r  at  c r i t i c a l i t y  [ 2 2 ] ;  f o r  a d e m o n s t r a t i o n  

o f  t h e  s y s t e m  s e e  F i g .  4.  I t  i s  e x p e c t e d  t h a t  t h e  to ta l  n u m b e r  o f  r e a c t a n t s  u p  to t i m e  t, 

s c a l e s  as  t h e  m e a n  d i s p l a c e m e n t  o f  a r a n d o m  w a l k e r  o n  a f r ac ta l ,  i .e. 
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Fig. 3. Plot of  cc(x , t )  defined in Eq. (8)  for d = 1 system with system size L = 10000 and t = 1000,5000 
and 10000. 

Table 1 
The values of  the exponents a and 13 (w ~ t a, h ~ t - # )  

d =  1 MF 

Both moving a ~ 0.3 a = 1/6 

/3 ~ 0.8 /3 = 2/3  

One static ot = 1/4 te = 0 

/3 = 3 /4  /3 = 1/2 

t 

R(  t ' ) d t '  ~ (r2)  1/2 ~ t l/d'', 

0 

w h e r e  dw is  t h e  a n o m a l o u s  d i f f u s i o n  e x p o n e n t  [ 4 2 ] .  F r o m  t h i s  it  f o l l o w s  t ha t  t h e  r e a c t i o n  

r a t e  
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R ( t )  = ? R ( x , t ) d x ~ t  - y ,  y = l - 1 / d w .  (11) 

- - 0 0  

One must distinguish between reaction diffusion on the infinite cluster and on the 

percolation system, containing also small clusters [43].  The reaction rate on the infinite 

cluster is smaller and decrease slower compared with the system containing clusters of  

all sizes. This can be understood as follows. 

Applying scaling arguments we can say that up to time t the reaction invades a typical 

length r* ~ t 1/dw which corresponds to the cluster mass s* ~ r *as ~ t ds/d' ' .  Thus, at 

any finite time t we can divide all clusters into two groups according to their sizes: 

act ive  clusters of  mass s > s*, in which particles are not aware of  the finiteness of  their 

cluster (this group contains the infinite cluster), and inactive clusters of  mass s < s* on 

which at least one of  the reactants has vanished and the reaction rate is zero. According 

to this picture, in the full percolation system, which contains clusters of  all sizes, at 

any time there are active clusters of  finite size that can contribute to the reaction rate. 

Therefore, the rate of  reaction in the percolation system is always higher than the rate 

on the infinite cluster alone. Moreover, since s* is growing with time there are always 

some clusters that become inactive, causing an additional (apart from the one caused 

by slowing of  the diffusion rate on the infinite cluster network) decrease of  the rate of  

reaction in the percolation system. Since the system is self-similar this has to influence 

the reaction rate exponent. 

To make the quantitative description of  the above considerations we will look on each 
cluster of  mass s and linear size r ~ s l/ds as a reservoir of  particles divided by the 

f r o n t  l ine into A and B parts. The sites of  a given cluster lying on a front line form, 

which we call an act ive  f ron t .  The length gs of  the active front in a cluster of  mass s is 

expected to be 

g,, ~ r d t - I  ~ S ( d j - 1 ) / d f  (12) 

Next we assume that rate of  reaction on a cluster per unit length of  active front is 

{ t  -~,  t < t*, 
Ro( t )  ~ O, t > t*, (13 )  

where t* = s dw/dz. Therefore, the total contribution of  all the active clusters of  size 
s to the reaction rate is 

R,,( t) ~ q ~ s S ( d f - l ) / d Q  - y ,  (14) 

where ¢,,, is number of  clusters of  size s that intersect the front line. One can estimate 
q~, as follows. In a percolation system of size L × L there are ns clusters of  mass s. Only 

a small part of  them intersects the front line, namely those in a strip of  width w ~ s I/dj 

around the front line. Their fraction is w / L .  Therefore, ~Ps ~ ( s l / d l / L ) n s  ~ s l / d l n s  • 

Substituting this in (14) we get 

R,.(t) ~ s 1 / d J n s s ( d r - 1 ) / d f t  - y  = t -Ysns .  (15) 



Q
 

~o
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Thus,  the react ion rate in the percolat ion system is 

OO 

R( t) = ~ Rs ( t )  = t - ~ ' ( s * )  2 . r  = t -~ t  -a = t -~' , 
S:S* 

d~  
6 = ~ , '  - T = - f f - ( r  - 2 ) .  ( 1 6 )  

£11W 

Hence, the effect o f  the dy ing  clusters changes the reaction rate exponent ,  as expected. 

These results are in good agreement  with our  numerical  s imulat ions,  see Fig. 5. 

We also s tudy the finite size effects on the reaction diffusion system. For a percolat ion 

system of  size L x L we expect that for the infinite cluster, 

R ( t )  = L at-1 t - r ,  (17a)  

whi le  for the percolat ion system 

R ( t )  = Lt -e ' .  (17b)  

We expect that at t ime t* ,-~ L &' these two rates become equal, since no "small"  

active cluster  exist in the system above t*. Indeed,  equat ing the last two expressions 

of  (17)  reproduces Eq. (16 ) .  The prefactor L in (17b)  assures that the reaction rate 

for percolat ion system is larger for t < t* than the reaction rate on the infinite cluster. 

Indeed,  the ratio of  the reaction rates at t = 1 is L 2 - d / .  

5. T h e  r e a c t i o n  f r o n t  o f  L ~ v y  f l i gh t s  in  d = 1 

The ini t ia l ly  separated reaction A ÷ B ~ C, where the particles have Ldvy flight prop- 

erties have been studied on the d = 1 Eucl idean system [44] .  The average displacement  

for a Ldvy flight is (Ixl) cx t 1/~, where 1 < T <~ 2 [45] .  So the reaction rate scales with 

t ime as 

R ( t )  = f R ( x , t ) d x ~ t  1/~-1. (18)  

- -  O C  

Apply ing  scaling arguments  on the mean  field ( M F )  set of  Eqs. (1 ) ,  we find that the 

width w of  the reaction front R(x ,  t) scales with t ime as w ~ t '~ with 

Fig. 4. Reaction-diffusion on the two-dimensional infinite percolation cluster at criticality at t = 2000. White 
squares represent sites of the infinite cluster. Blue and red circles represent the A and B particles. Initially all 
sites of cluster in the right half plane and left half plane were occupied by A and B particles, respectively. 

Fig. 8. Numerical simulations of A + Bstati c ----* Cinert  where A particles are injected at rate 3, = 5 at the center 
of the lattice and particles of type B are static and are located at each site of a d = 2 lattice. Plot of the 
reactant area after t = 20, 160, 540, 1280, 2500, 4320 and 6860. 
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Fig. 5. (a) Plot of the rate cc (t)  for the percolation system (o) and for the infinite percolation cluster ( o ). 
(b) Plot of successive slopes of the data in (a). The exponent y of reaction rate on the infinite cluster (+)  
and on the percolation system (o). 

ce = l / Y  - 1 /3 ,  (19a)  

and the reaction height, scales as h ~ t - ~  with 

fl = 2 / 3 ,  (19b)  

independent  o f  y. The value of  y = 2 is critical value above which regular diffusion 

exists. In Fig. 6, we compare  our  numerical  s imulat ions  with the predict ion of  Eqs. 

(19 ) .  

6. T h e  reac t ion  rate  A + Bstatic ~ Cinert." L o c a l i z e d  source  o f  A 

Anothe r  system in which the reactants are ini t ia l ly separated and which is amenable  

to experiment ,  is the reaction A ÷ Bstaac ~ Cinert with a localized source of  A species. 

There exist many  systems in nature in which a reactant A is "injected" into a d-  

d imens iona l  substrate B where upon it reacts to form an inert  product  C. Recent ly such 
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Fig. 6. (a) The integral of the reaction profile R ( x , t )  = Jo R ( x ' t l ) d t t  for the reaction A + B --~ C where 
A and B are Levy flights with y = 1.5 at t=256 (lower curve), t=1024 (middle curve) and t=4096 (upper 
curve). (b) The scaling of the data presented in (a).  Note that the MF predictions are fl=2/3 and a = l / 3  
compared to fl ~ 0.71 and o~ _~ 0.4 obtained in simulations. 

an experiment has been performed [46] by injecting iodine at a point of  a large silver 

plate and measuring quantities of  the reaction I2 gas + 2Agsolid ~ 2Aglsolid. 
First we consider N particles of  type A that are initially at the origin of  a lattice. The B 

particles are static and distributed uniformly on the lattice sites. Using an approximate 
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of a lattice and particles of type B are static and located at each site of the d = 3 lattice: (a) plot of C(t) 
for N = 100 (x ) ,  500 (*), 1000 (n),  and 2000 (A)  particles; (b) plot of C(t) in the scaling form Eq. 
(24a). Note that the results are of a single Monte Carlo run and not averaged--showing that fluctuations are 
negligible in this process. 

quasi-s tat ic  [47]  analyt ical  approach for t rapping in a m o v i n g  boundary we  der ived 

express ions  for C ( t ) ,  the t ime-dependen t  growth size o f  the C region and for S ( t )  the 

number  o f  su rv iv ing  A part icles  at t ime t. For  ex t remely  short t ime t < t× ,-, In N we 

find C ( t )  ~ t d. For  t > t× we find [48]  

C ( t )  ~ N f  (-~-77/a ) and S ( t )  = N - C ( t ) .  (20a)  

The  scal ing funct ion f ( u )  is the solut ion to the differential  equat ion 

d f  ~., k d f _ 2 / a [  1 _ f ] ,  (20b)  
d r  

and kd is a constant,  depend ing  only  on dimension.  Fig. 7 shows s imulat ion data 

suppor t ing (20a ) .  

N o w  cons ider  the case in which A particles o f  type A are injected per  unit t ime at 

the or igin  o f  the lattice. For  this case we find [46]  

{ v / 8 D t l n ( a 2 t / 2 D ) ,  d =  1, 
C ( t )  ,-~ r r a t ,  d = 2, (21)  

At, d = 3 ,  

and 

At, d = l ,  
S(  t)  ~ ( 2t - r ra ) t ,  d = 2, 

C3( ,~)t  2/3, d = 3. 
(22)  
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In (21) and (22) ,  a is the solution of a r t  = A e - ' /4D and C3(A) = (A /4D)  (3A/4~-) e/3. 

Moreover, we find that for both one- and three-dimensional systems C (t)  satisfies the 

scaling relation 

C ( t )  ~ ~d/(d-2)g ( t a ~ )  (23) 
Eqs. (21) and (22) have been supported by numerical simulations [46]. (See also Fig. 

8.) Eqs, (20) can be generalized for fractals: 

(24a) 

where f ( u )  is the solution of the differential equation 

d f  ~ ka f_2/a ,[1  _ f ] .  (24b) 
du 

Here d,. is the fracton dimension defined by d, = 2df/dw, in which df is the fractal 

dimension and dw the diffusion exponent [49].  For the case of constant injection rate on 

a fractal we do not have an analytical derivation. However, we recently calculated [ 50] 

the number of distinct sites visited on a fractal by N random walkers starting from the 

origin, aN(t) ,~ (In N)al/ata'/2 with ~ = d w / ( d ~ . -  1). This result can be shown to be 

valid also for the number of distinct site visited by random walkers injected at the origin 

with a constant rate ,~ when replacing N = ,~t. Thus we obtain that ( ln ,~t)as/st~'/2 is an 

upper bound for C ( t ) .  
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