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We review recent developments in the study of the diffusion reaction systems of the type
A4+ B — C wn which the reactants are initially separated. We consider the case where the
A and B particles are initially placed uniformly in Fuclidean space at ¥ > 0 and x < 0
respectively. We find that whereas for d > 2 the mean field exponent characterizes the
width of the reaction zone, fluctuations are relevant in the one-dimensional system. We
also present analytical and numerical results for the reaction rate on fractals and percolation

systems.

I. Introduction.

The dynamics of diffusion controlled reactions of the type A + B — (' has been studied
extensively since the pioneering work of Smoluchowski [1,2]. Most studies have focused
on homogeneous systems, 1.e., when both reactants are mitially umiformly mixed in a
d-dimensional space, and interesting theoretical results have been obtained. When the
concentrations of the A and B reactants are initially equal, i.e., c4(0) = cp(0) = ¢(0), the
concentration of both species is found to decay with time as, ¢(t) ~ t=4* for Euclidean d <
4-dimensional systems [3-10] and as ¢(t) ~ t~%/% for fractals [5,6] with fracton dimension
ds < 2. Also, self-segregated regions of A and B in low dimensions (d < 3) [4] and in fractals
[9] have been found. Quantities such as the distributions of domain sizes of segregated
regions and nterparticle distances between species of the same type and different types
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have been calculated [11-13]. These systems were also studied theoretically and numerically
under steady state conditions and several interesting predictions have been obtained [14—
17]. However, the above numerical and theoretical predictions have not been observed
in experiments, in part because of difficulties to implement the mitially uniformly-mixed
distribution of reactants.

In recent years it was realized that diffusion reaction systems in which the reactants
are initially separated [18], can be studied experimentally [19,20] and that the dynamics
of such a system have many surprising features [20-27]. These systems are characterized
by the presence of a dynamical interface or a front that separates the reactants. Such a
reaction front appears in many biological, chemical and physical processes [28-34].

Galfi and Racz [18] studied the diffusion-controlled reaction system with initially sep-
arated reactants. They studied the kinetics of the reaction diffusion process using a set of

mean-field (MF) type equations,

aCA 620A
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Here ca = ca(x,t) and cp = cp(x,t) are the concentrations of A and B particles at

position z at time ¢ respectively, D4 p are the diffusion constants and k is the reaction
constant. The rate of production of the C-particles at site # and time ¢, which we call the
reaction-front profile, is given by R(z,t) = kcacp. The initial conditions are that the A
species are uniformly distributed on the right-hand side of # = 0 and the B species are
unmiformly distributed on the left-hand side.
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Using scaling arguments, Galfi and Racz [18] find that the width w of the reaction
front R(xz,t) scales with time as, w ~ t* with & = 1/6 and the reaction rate at the center
of the front, which is called the reaction height, scales as h ~ t=7 with 8 = 2/3.

Experiments [19] and simulations [19,21-24] for d > 2 systems in which both reactants
diffuse, support the above predicted values for « and 3. Indeed, Cornell et al [23] argue
that the upper critical dimension 1s d = 2 and the MF approach should therefore be valid
for d > 2. Moreover, numerical simulations of 1D systems show that the width exponent
appears to be o ~ 0.3 and the height exponent 7 ~ 0.8 [23,24]. Recently [25] it was
argued that « varies between 1/4 and 3/8, depending on the moment at which the width
1s calculated. For a more detailed discussion, see Sec. III. The origin of the difference
between the exponents of 1D systems and those of higher dimensional systems 1s due to
fluctuations 1 the location of the front which are important in low dimensions and are
neglected in the MF approach.

Taitelbaum et al [20,22] studied analytically Egs. (1) and presented experiments for the
limit of small reaction constant or short time. The main results are that several measurable
quantities undergo interesting crossovers. For example, the global reaction rate changes
from t'/? in the short time limit to ¢t~/ at the asymptotic time regime. The center of
the front can change its direction of motion as found in experiments [20]. Ben-Naim and

Redner [26] studied the solution of (1) under steady-state conditions.

II. The Form of the Reaction Front, R(z,t), in the Mean-Field Approach.
In a recent work [27] we consider the symmetric case in which both diffusion constants and
initial concentrations are equal, i.e., Dg = Dp = D and ca(2,0) = cp(x,0) = co. If we

Havlin/Araujo/Larralde/Shehter/Stanley/Trunfio (poland.tex 16 June 94) 3



define F(x,t) = ca(z,t) — cp(x,t), then from Eq. (1) follows,

ar O2F
T D@; (2)

subject to the conditions that mitially the A particles are uniformly distributed to the
right of the origin while the B particles are uniformly distributed to the left of the origin.
Equation (2) has the solution F'(x,t) = ¢q erf(z/v/4Dt).

We rewrite the concentrations of A and B particles as (see Fig. 1),
cale,t) = Gi(x,t) + bei(x,t), cp(z,t) = Ga(w,t) + bcalx,t) (3)

where

and Ga(z,t) = Gi(—x,t). Tt is easy to see that under the above conditions, éci(z,t) =
bco(x,t) = bc(z,t). Substituting Eqgs. (3) into Egs. (1) yields

agic) ) Da;;&;) L ( oo (ﬁ) V 50) e (5)

The asymptotic solution for this equation that vanishes as ¥ — oo 1s,

—1/3 xr —-1/4 2 Ar 3/2 1/6 1/2
be(z,t) ~ 1t ( ) exp | =3 | 7175 , P <re 4Dty ’?, (6)

$1/6

where A = (ka/D)'3, a = c¢o/(x D). As may be confirmed by direct substitution, this
expression is a solution of Eq. (5) up to terms of order (éc¢)/t, which can be neglected for
large t.

Using Eq. (6) we can write an expression for the reaction-front profile R(x,t) defined

in (1) as,
kazx _ r \3/4 2 axe \?
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It is seen that the width of the reaction front grows as t'/%, whereas the height can
be identified with the prefactor t~2/3 in Eq. (7), consistent with the exponents found by
Galfi and Racz [18]. Equation (7) provides a more quantitative solution of Eqs. (1) than
the previous scaling arguments [18], as well as information on the dependence of the form
of the reaction front on the parameters cq, k, and D, for the symmetric case.

For the case in which one reactant is static no analytical solution (of Eq. (1)) exists for
the form of the reaction front profile. However, numerical solutions of Eq. (1) with Dg =0
shown in Fig. 2, suggest that R(x’,t) ~ t=Pg(x' /t*)exp(—|&’|/t¥), where &’ = 2 — yt'/2,
The excellent scaling in Fig. 2b suggests that the width does not increase with time, 1.e.,
w ~ 1% with o« = 0 and h ~ t=7 with 8 = 1/2, consistent with the scaling arguments in

ref. [21].

III. The Front, R(x.,t), in d = 1.
The reaction front profile in d = 1 systems, R(x,t), when both reactants are diffusing with
the same diffusion constant, D4 = Dp # 0, has been calculated numerically [24]. The data

shown in Fig. 3 suggests that

co(x,t) = / R(z, t')dt’ ~ exp(—alz|/t™), (8)

with « = 0.33 £ 0.05.
For the case Dy # 0, Dp = 0, analytical and numerical studies [35] yield for the

reaction front profile

1 9y 1/2 (:E_,ﬂq/z)z r—
e =gom (5) oo () (4 5 ) O
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where v and p are constants. From eq. (9) follows that « = 1/4 and g = 3/4. Tt is
interesting to note that the time integral of R(xz,t), which is the total production of the

C-particles at z up to time ¢, 1s given by

w00 = [ Re,rr = Jerte (22 (10
cole,t) = z,7)dr = —erfc | —— | .
¢ 0 2 2utl/?

To summarize the case of A + B — €' with mitially separated reactants, we list in table I

the four sets of exponents discussed above.

TABLE 1

The values of the exponents a and 3 (w ~ t%, h ~ t=7).

Both moving a=0.3 a=1/6

One static a=1/4 a=0

IV. The Reaction Rate in d = 2 Percolation

The case of A+B—C with mitially-separated reactants on fractal systems was studied on
the d = 2 infinite percolation cluster at criticality [22], for a demonstration of the system
see Fig. 4. It 1s expected that the total number of reactants up to time ¢,

/ co(x,t)de,

[e.0]
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scales as the mean displacement of a random walker on a fractal, 1.e., (7“2)1/2 ~

where d,, is the anomalous diffusion exponent [36]. From this follows that the reaction rate

R(t) = /_OO Rz, t)de ~t77, y=1-=1/d,. (11)

o0

One has to distinguish between reaction-diffusion on the infinite cluster and n the
percolation system, containing also small clusters [37]. The reaction rate on the infinite
cluster 18 smaller and decrease slower compared with the system contamning clusters of
all sizes. This can be understood as follows. At any finite time we can divide all clusters
into two groups according to their sizes: active — clusters of mass s > s*, in which at

time t < t* ~ g*dwldy

particles are not aware of the finitness of their cluster (this group
contains the infinite cluster), and inactive clusters of mass s < s* on which at least one of
the reactants has been vanished and the reaction rate 1s zero. According to this picture,
in the full percolation system at any time there are active clusters of finite size, that can
contribute to the reaction rate. Therefore, the rate of reaction in the percolation system 1s
always higher, than on the infinite cluster. Also, at any time there are some finite clusters
that become inactive causing additional (comparing with the infinite cluster network)
decrease of the rate of reaction in the percolation system. Since the system 1s self-similar
one expect a change in the reaction rate exponent.

To quantify the above considerations we can look on each cluster of mass s and linear
size r ~ s'/% as a reservoir of particles divided by the front line into A- and B-parts. We

introduce an active front of a cluster as the sites belonging both to the cluster and to the

front line. The length ¢, of the active front of a single cluster of size s is expected to be

df—l

Gl s (12)

by ~ 1
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Next we assume that rate of reaction on a cluster of mass s per unit length of active front

1s

7t < t”
Ry(t) ~ 13
o~ {07 s (13)
where t* = s%/ds Therefore, the total contribution of active clusters of size s to the
reaction rate 1s
df—l
Rs(t) ~ @ss % 77, (14)

where ¢, 1s number of clusters of size s that intersect the front line. One can estimate ¢,
as follows. In a percolation system of size L x L there are n, clusters of mass s. Only a

small part of them intersects the front line, those in a strip of width w ~ s'/% around the

1/df
L

S

front line. Their fraction is w/L. Therefore, ¢, ~ ns ~ stin,. Substituting this in

(14) we get

de—1

1/d i
Rs(t) ~ s ldf s T 477 =t Vsn,. (15)
Thus, the reaction rate in the percolation system is
oQ
Rty= R(t)y=t"(s")" =t =17
5§=5

f=v —y= L), (16)

w

These results are in good agreement with our simulations, see Fig. 5.
We also study the finite size effects on the reaction-diffusion system. For a percolation

system of size L x L we expect that for the infinite cluster,
R(t)y = LY~ 177, (17a)

while for the percolation system

I

R(t) = Lt~ (17b)
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We expect that at time ¢* ~ L% these two rates become equal, since no “small” active
cluster exist in the system above t*. Indeed, equating the last two expressions of (17)
reproduces Eq. (16). The prefactor L in (17b) assures that the reaction rate for percolation
system 1s larger for ¢ < t* than the reaction rate on the infinite cluster. Indeed, the ratio

of the reaction rates at + = 1 is L2 %,

V. The Reaction Rate A+B:iatic —Cinert : localized source of A
Another system in which the reactants are initially separated and which 1s amenable to
experiment, 1s the reaction A4+Bgtatic — Cinert with a localized source of A species. There
exist many systems in nature in which a reactant A 1s “injected” into a d-dimensional
substrate B where upon 1t reacts to form an mert product C. Recently such an experiment
has been performed [38] by injecting iodine at a point of a large silver plate and measuring
quantities of the reaction Iz gas + 2Agsctia — 2AgLsola

First we consider N particles of type A that are imitially at the origin of a lattice. The
B particles are static and distributed uniformly on the lattice sites. Using an approximate
quasistatic [39] analytical approach for trapping in a moving boundary we derived expres-
sions for C'(t), the time-dependent growth size of the C-region and for S(¢) the number of
surviving A particles at time t. For extremely short time ¢ <ty ~ In N we find C(t) ~ 9.

For t >ty we find [40]

C(t)~ Nf (#) and  S(t) = N — C(1). (184)

The scaling function f(u) is the solution to the differential equation

L ka2 - ), (155)
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and kg 1s a constant, depending only on dimension. Figure 6 shows simulation data sup-
porting (18a).
Now consider the case in which A particles of type A are injected per unit time at the

origin of the lattice. For this case we find [38]

V8DtIn(A%t/2D) d=1

G(t) ~ < Tat d=72 (19)
At d =3,
and
At d=1
Sty~< (A—ma)t d=2 (20)

Ca(Mt*3  d =3,
In (19) and (20), « is the solution of ar = Aexp(—a/4D) and Cs(A) = (A/4D)(3A/47)%/3.
Moreover, we find that for both one- and three-dimensional systems C(t) satisfies the

scaling relation
df(d—2 l
C(t) ~ A=) (W) . (21)

Equations (19)-(21) have been supported by numerical simulations [38]. (See also Fig. 7.)

Equations (18) can be generalized for fractals;

i
where f(u) is the solution of the differential equation,

N ] (260)

Here d, is the fracton dimension defined by d, = 2d;/d,, in which d; 1s the fractal
dimension and d,, the diffusion exponent [41]. For the case of constant injection rate on a
fractal we do not have an analytical derivation. However, we recently calculated [36] the
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number of distinct sites visited on a fractal by N random walkers starting from the origin,
Sn(t) ~ (In N)df/‘stds/z with § = dy /(dy — 1). This result can be shown to be valid also
for the number of distinct site visited by random walkers mnjected at the origin with a
constant rate A when replacing N = At. Thus we obtain that (In /\t)df/‘stds/z 1S an upper

bound for C'(t).

We wish to thank F. Leyvraz, S. Redner, H. Taitelbaum and G. H. Weiss for useful

discussions.
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Fig. 1: Schematic picture of the reactant concentration profiles near the origin. The solid
lines represent the (71 5(z,t) part of the profile, the dashed lines represent the complete
form (1 5(x,t) £+ dc(x,t). Note that the profile of species A is given solely by ée(z, ) on

the left of the origin. (From Ref. [27].)

Fig. 2: Numerical solution of Eq. (1) for the case D =0, D4 # 0: (a) plot of ¢(z,t) as a
function of  for t = 500, 1000 and 5000; (b) the good scaling plot of ¢(z,t) as a function

of (¢ — (z)) indicates that « = 0 and g = 1/2.

Fig. 3: Plot of co(x,t) defined in Eq. (8) for d = 1 system with system size 1. = 10000
and £ = 1000, 5000 and 10000.
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Fig. 4: Reaction-diffusion on the 2-dimensional infinite percolation cluster at criticality at
t = 2000. White squares represent sites of the infinite claster. Blue and red circles represent
the A and B particles. Imitially all sites of cluster in the right half plane and left half plane

were occupled by A and B particles respectively.

Fig. 5: (a) Plot of the rate cc(¢) for the percolation system (¢) and for the infinite
percolation cluster ( o ). (b) Plot of successive slopes of the data in (a). The exponent ~

of reaction rate on the infinite claster (4) and on the percolation system (o).

Fig. 6: Numerical simulations of A + B — C where N diffusing particles of type A are
initially at the center of a lattice and particles of type B are static and located at each
site of the d = 3 lattice: (a) plot of C'(t) for N = 100 (x), 500 (e), 1000 (O), and 2000
(A) particles; (b) plot of C'(¢) in the scaling form Eq. (22a). Note that the results are of a
single Monte Carlo run and not averaged—showing that fluctuations are negligible in this

process.

Fig. 7: Numerical simulations of A+ B(static) — C(inert) where A particles are injected
at rate A = b at the center of the lattice and particles of type B are static and are located
at each site of a d = 2 lattice. Plot of the reactant area after t = 20, 160, 540, 1280, 2500,

4320 and 6860.
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