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We review recent developments in the study of the di�usion reaction systems of the type

A� B � C in which the reactants are initially separated� We consider the case where the

A and B particles are initially placed uniformly in Euclidean space at x � � and x � �

respectively� We �nd that whereas for d � � the mean �eld exponent characterizes the

width of the reaction zone� �uctuations are relevant in the one�dimensional system� We

also present analytical and numerical results for the reaction rate on fractals and percolation

systems�

I� Introduction�

The dynamics of di	usion controlled reactions of the type A � B � C has been studied

extensively since the pioneering work of Smoluchowski 
����� Most studies have focused

on homogeneous systems� i�e�� when both reactants are initially uniformly mixed in a

ddimensional space� and interesting theoretical results have been obtained� When the

concentrations of the A and B reactants are initially equal� i�e�� cA��� � cB��� � c���� the

concentration of both species is found to decay with time as� c�t� � t�d�� for Euclidean d �

�dimensional systems 
���� and as c�t� � t�ds�� for fractals 
���� with fracton dimension

ds � �� Also� selfsegregated regions ofA andB in low dimensions �d � �� 
�� and in fractals


�� have been found� Quantities such as the distributions of domain sizes of segregated

regions and interparticle distances between species of the same type and di	erent types
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have been calculated 
������� These systems were also studied theoretically and numerically

under steady state conditions and several interesting predictions have been obtained 
���

���� However� the above numerical and theoretical predictions have not been observed

in experiments� in part because of di�culties to implement the initially uniformlymixed

distribution of reactants�

In recent years it was realized that di	usion reaction systems in which the reactants

are initially separated 
���� can be studied experimentally 
������ and that the dynamics

of such a system have many surprising features 
������� These systems are characterized

by the presence of a dynamical interface or a front that separates the reactants� Such a

reaction front appears in many biological� chemical and physical processes 
�������

G�al� and R�acz 
��� studied the di	usioncontrolled reaction system with initially sep

arated reactants� They studied the kinetics of the reaction di	usion process using a set of

mean�eld �MF� type equations�

�cA
�t

� DA
��cA
�x�

� kcAcB ��a�

�cB
�t

� DB
��cB
�x�

� kcAcB� ��b�

Here cA � cA�x� t� and cB � cB�x� t� are the concentrations of A and B particles at

position x at time t respectively� DA�B are the di	usion constants and k is the reaction

constant� The rate of production of the Cparticles at site x and time t� which we call the

reactionfront pro�le� is given by R�x� t� � kcAcB� The initial conditions are that the A

species are uniformly distributed on the righthand side of x � � and the B species are

uniformly distributed on the lefthand side�
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Using scaling arguments� G�al� and R�acz 
��� �nd that the width w of the reaction

front R�x� t� scales with time as� w � t� with � � ��� and the reaction rate at the center

of the front� which is called the reaction height� scales as h � t�� with 	 � ����

Experiments 
��� and simulations 
��������� for d � � systems in which both reactants

di	use� support the above predicted values for � and 	� Indeed� Cornell et al 
��� argue

that the upper critical dimension is d � � and the MF approach should therefore be valid

for d � �� Moreover� numerical simulations of �D systems show that the width exponent

appears to be � � ��� and the height exponent 	 � ��� 
������� Recently 
��� it was

argued that � varies between ��� and ���� depending on the moment at which the width

is calculated� For a more detailed discussion� see Sec� III� The origin of the di	erence

between the exponents of �D systems and those of higher dimensional systems is due to

�uctuations in the location of the front which are important in low dimensions and are

neglected in the MF approach�

Taitelbaum et al 
������ studied analytically Eqs� ��� and presented experiments for the

limit of small reaction constant or short time� The main results are that several measurable

quantities undergo interesting crossovers� For example� the global reaction rate changes

from t��� in the short time limit to t���� at the asymptotic time regime� The center of

the front can change its direction of motion as found in experiments 
���� BenNaim and

Redner 
��� studied the solution of ��� under steadystate conditions�

II� The Form of the Reaction Front� R�x� t�� in the Mean�Field Approach�

In a recent work 
��� we consider the symmetric case in which both di	usion constants and

initial concentrations are equal� i�e�� DA � DB � D and cA�x� �� � cB�x� �� � c�� If we
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de�ne F �x� t� � cA�x� t�� cB�x� t�� then from Eq� ��� follows�

�F

�t
� D

��F

�x�
� ���

subject to the conditions that initially the A particles are uniformly distributed to the

right of the origin while the B particles are uniformly distributed to the left of the origin�

Equation ��� has the solution F �x� t� � c� erf�x�
p
�Dt��

We rewrite the concentrations of A and B particles as �see Fig� ���

cA�x� t� � G��x� t� � 
c��x� t�� cB�x� t� � G��x� t� � 
c��x� t� ���

where

G��x� t� �

�
F �x� t� 
x � ��
� 
x � ���

���

and G��x� t� � G���x� t�� It is easy to see that under the above conditions� 
c��x� t� �


c��x� t� � 
c�x� t�� Substituting Eqs� ��� into Eqs� ��� yields

��
c�

�t
� D

���
c�

�x�
� k

�
c� erf

�
xp
�Dt

�
� 
c

�

c ���

The asymptotic solution for this equation that vanishes as x�� is�


c�x� t� � t���	
� x

t��


�����
exp

�
��

�

�
�x

t��


�	��
�
� t��
 	 x	 ��Dt����� ���

where � � �ka�D���	� a � c����D����� As may be con�rmed by direct substitution� this

expression is a solution of Eq� ��� up to terms of order �
c��t� which can be neglected for

large t�

Using Eq� ��� we can write an expression for the reactionfront pro�le R�x� t� de�ned

in ��� as�

R�x� t� � kax

t���
�
c� � t���	

� x

t��


�	��
exp

�
��

�

�
�x

t��


�	��
�
� ���
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It is seen that the width of the reaction front grows as t��
� whereas the height can

be identi�ed with the prefactor t���	 in Eq� ���� consistent with the exponents found by

G�al� and R�acz 
���� Equation ��� provides a more quantitative solution of Eqs� ��� than

the previous scaling arguments 
���� as well as information on the dependence of the form

of the reaction front on the parameters c�� k� and D� for the symmetric case�

For the case in which one reactant is static no analytical solution �of Eq� ���� exists for

the form of the reaction front pro�le� However� numerical solutions of Eq� ��� with DB � �

shown in Fig� �� suggest that R�x�� t� � t��g�x��t�� exp��jx�j�t��� where x� � x� t����

The excellent scaling in Fig� �b suggests that the width does not increase with time� i�e��

w � t� with � � � and h � t�� with 	 � ���� consistent with the scaling arguments in

ref� 
����

III� The Front� R�x�t�� in d � ��

The reaction front pro�le in d � � systems� R�x� t�� when both reactants are di	using with

the same di	usion constant� DA � DB 
� �� has been calculated numerically 
���� The data

shown in Fig� � suggests that

cC�x� t� �
Z t

o

R�x� t��dt� � exp��ajxj�t��� ���

with � � ����� �����

For the case DA 
� �� DB � �� analytical and numerical studies 
��� yield for the

reaction front pro�le

R�x� t� �
�

�t	��

�
��

��

����

exp

�
� �x � t�����

��t���

��
� �

x� t���

�t���

�
� ���
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where  and � are constants� From eq� ��� follows that � � ��� and 	 � ���� It is

interesting to note that the time integral of R�x� t�� which is the total production of the

Cparticles at x up to time t� is given by

cC�x� t� �

Z t

�

R�x� � �d� �
�

�
erfc

�
x� t���p

��t���

	
� ����

To summarize the case of A� B � C with initially separated reactants� we list in table I

the four sets of exponents discussed above�

TABLE �

The values of the exponents � and 	 �w � t�� h � t����

d�� MF

Both moving � �� ��� � � ���

	 �� ��� 	 � ���

One static � � ��� � � �

	 � ��� 	 � ���

IV� The Reaction Rate in d � � Percolation

The case of A�B�C with initiallyseparated reactants on fractal systems was studied on

the d � � in�nite percolation cluster at criticality 
���� for a demonstration of the system

see Fig� �� It is expected that the total number of reactants up to time t�

Z
�

��

cC�x� t�dx�
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scales as the mean displacement of a random walker on a fractal� i�e�� hr�i��� � t��dw�

where dw is the anomalous di	usion exponent 
���� From this follows that the reaction rate

R�t� �
Z
�

��

R�x� t�dx � t�� �  � �� ��dw� ����

One has to distinguish between reactiondi	usion on the in�nite cluster and in the

percolation system� containing also small clusters 
���� The reaction rate on the in�nite

cluster is smaller and decrease slower compared with the system containing clusters of

all sizes� This can be understood as follows� At any �nite time we can divide all clusters

into two groups according to their sizes� active � clusters of mass s � s�� in which at

time t � t� � s�dw�df particles are not aware of the �nitness of their cluster �this group

contains the in�nite cluster�� and inactive clusters of mass s � s� on which at least one of

the reactants has been vanished and the reaction rate is zero� According to this picture�

in the full percolation system at any time there are active clusters of �nite size� that can

contribute to the reaction rate� Therefore� the rate of reaction in the percolation system is

always higher� than on the in�nite cluster� Also� at any time there are some �nite clusters

that become inactive causing additional �comparing with the in�nite cluster network�

decrease of the rate of reaction in the percolation system� Since the system is selfsimilar

one expect a change in the reaction rate exponent�

To quantify the above considerations we can look on each cluster of mass s and linear

size r � s��df as a reservoir of particles divided by the front line into A and Bparts� We

introduce an active front of a cluster as the sites belonging both to the cluster and to the

front line� The length �s of the active front of a single cluster of size s is expected to be

�s � rdf�� � s
df��

df ����
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Next we assume that rate of reaction on a cluster of mass s per unit length of active front

is

R��t� �
�
t�� t � t�

� t � t�
� ����

where t� � sdw�df � Therefore� the total contribution of active clusters of size s to the

reaction rate is

Rs�t� � �ss
df��

df t�� � ����

where �s is number of clusters of size s that intersect the front line� One can estimate �s

as follows� In a percolation system of size L � L there are ns clusters of mass s� Only a

small part of them intersects the front line� those in a strip of width w � s��df around the

front line� Their fraction is w�L� Therefore� �s � s��df

L ns � s��dfns� Substituting this in

���� we get

Rs�t� � s��df nss
df��

df t�� � t��sns� ����

Thus� the reaction rate in the percolation system is

R�t� �
�X

s�s�

Rs�t� � t�� �s����� � t�� t�� � t��
�


 � � �  �
df
dw

�� � ��� ����

These results are in good agreement with our simulations� see Fig� ��

We also study the �nite size e	ects on the reactiondi	usion system� For a percolation

system of size L� L we expect that for the in�nite cluster�

R�t� � Ldf��t�� � ���a�

while for the percolation system

R�t� � Lt��
�

� ���b�
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We expect that at time t� � Ldw these two rates become equal� since no �small active

cluster exist in the system above t�� Indeed� equating the last two expressions of ����

reproduces Eq� ����� The prefactor L in ���b� assures that the reaction rate for percolation

system is larger for t � t� than the reaction rate on the in�nite cluster� Indeed� the ratio

of the reaction rates at t � � is L��df �

V� The Reaction Rate A	Bstatic �Cinert 
 localized source of A

Another system in which the reactants are initially separated and which is amenable to

experiment� is the reaction A�Bstatic � Cinert with a localized source of A species� There

exist many systems in nature in which a reactant A is �injected into a ddimensional

substrate B where upon it reacts to form an inert product C� Recently such an experiment

has been performed 
��� by injecting iodine at a point of a large silver plate and measuring

quantities of the reaction I� gas � �Agsolid � �AgIsolid

First we consider N particles of type A that are initially at the origin of a lattice� The

B particles are static and distributed uniformly on the lattice sites� Using an approximate

quasistatic 
��� analytical approach for trapping in a moving boundary we derived expres

sions for C�t�� the timedependent growth size of the Cregion and for S�t� the number of

surviving A particles at time t� For extremely short time t � t� � lnN we �nd C�t� � td�

For t � t� we �nd 
���

C�t� � Nf

�
t

N��d

�
and S�t� � N � C�t�� ���a�

The scaling function f�u� is the solution to the di	erential equation

df

d�
� kdf

���d
�� f �� ���b�
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and kd is a constant� depending only on dimension� Figure � shows simulation data sup

porting ���a��

Now consider the case in which � particles of type A are injected per unit time at the

origin of the lattice� For this case we �nd 
���

C�t� �

�
�
p
�Dt ln���t��D� d � �

��t d � �
�t d � ��

����

and

S�t� �

�
�
�t d � �
��� ���t d � �
C	���t��	 d � ��

����

In ���� and ����� � is the solution of �� � � exp�����D� and C	��� � ����D����������	�

Moreover� we �nd that for both one and threedimensional systems C�t� satis�es the

scaling relation

C�t� � �d��d��g

�
t

����d��

�
� ����

Equations ��������� have been supported by numerical simulations 
���� �See also Fig� ���

Equations ���� can be generalized for fractals!

C�t� � Nf

�
t

N��ds

�
� ���a�

where f�u� is the solution of the di	erential equation�

df

du
� kdsf

���ds 
�� f �� ���b�

Here ds is the fracton dimension de�ned by ds � �df�dw� in which df is the fractal

dimension and dw the di	usion exponent 
���� For the case of constant injection rate on a

fractal we do not have an analytical derivation� However� we recently calculated 
��� the
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number of distinct sites visited on a fractal by N random walkers starting from the origin�

SN �t� � �lnN�df ��tds�� with 
 � dw��dw � ��� This result can be shown to be valid also

for the number of distinct site visited by random walkers injected at the origin with a

constant rate � when replacing N � �t� Thus we obtain that �ln�t�df ��tds�� is an upper

bound for C�t��
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Fig� �
 Schematic picture of the reactant concentration pro�les near the origin� The solid

lines represent the G����x� t� part of the pro�le� the dashed lines represent the complete

form G����x� t� � 
c�x� t�� Note that the pro�le of species A is given solely by 
c�x� t� on

the left of the origin� �From Ref� 
�����

Fig� �
 Numerical solution of Eq� ��� for the case DB � ��DA 
� �� �a� plot of c�x� t� as a

function of x for t � ���� ���� and ����! �b� the good scaling plot of c�x� t� as a function

of �x� hxi� indicates that � � � and 	 � ����

Fig� �
 Plot of cC�x� t� de�ned in Eq� ��� for d � � system with system size L � �����

and t � ����� ���� and ������
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Fig� �
 Reactiondi	usion on the �dimensional in�nite percolation cluster at criticality at

t � ����� White squares represent sites of the in�nite claster� Blue and red circles represent

the A and B particles� Initially all sites of cluster in the right half plane and left half plane

were occupied by A and B particles respectively�

Fig� �
 �a� Plot of the rate cC�t� for the percolation system �� and for the in�nite

percolation cluster � � �� �b� Plot of successive slopes of the data in �a�� The exponent 

of reaction rate on the in�nite claster ��� and on the percolation system ����

Fig� �
 Numerical simulations of A � B � C where N di	using particles of type A are

initially at the center of a lattice and particles of type B are static and located at each

site of the d � � lattice� �a� plot of C�t� for N � ��� ���� ��� ���� ���� �ut�� and ����

��� particles! �b� plot of C�t� in the scaling form Eq� ���a�� Note that the results are of a

single Monte Carlo run and not averaged�showing that �uctuations are negligible in this

process�

Fig� �
 Numerical simulations of A�B�static� � C�inert� where A particles are injected

at rate � � � at the center of the lattice and particles of type B are static and are located

at each site of a d � � lattice� Plot of the reactant area after t � ��� ���� ���� ����� �����

���� and �����
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