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Abstract. A new approach is developed to self-avoiding walks as a critical phenomenon. 
The approach is based on  a simple assumption made on the step-step correlation function. 
This leads to a single scaling field related to the degree of polymerisation. As a result, 
all critical exponents are related to a single exponent. Moreover, the order parameter 
and critical fields have a clear physical meaning. The present interpretation of self-avoiding 
walks as critical suggests an additional meaning of the exponent Y in other critical systems. 

The phenomenon of long polymer chains is known to be analogous to critical 
phenomena. A great deal has been learnt in recent years about the universal properties 
of long polymer chains from the connection between polymer statistics and those of 
the n-vector model in the n = O  limit (de Gennes 1979, Domb 1972, des Cloizeaux 
1974, McKenzie 1976). While this relationship is of great importance for studying 
the n = O  ferromagnet case, it is not as enlightening from the point of view of a 
self-avoiding walk (SAW). For instance, the physical meaning of an order parameter 
or related fields is not clear at all in the context of SAWS (de Gennes 1979). 

Recently, Redner and Reynolds (1981) pfesented an approach to the SAW problem 
without appeal to the n-vector model. Their approach treats the generating function 
for SAWS as a grand partition function. They find a single scaling field which is the 
fugacity per monomer. As a result, all critical exponents are related to a single 
exponent. 

In the present work, we present a different physical approach which considers 
SAWS as a critical phenomenon on its own, that is, without appeal to the n-vector 
model or to any other analogue. Our approach is based on a simple assumption made 
on the step-step correlation function (SSCF). This assumption defines the order 
parameter and leads to a single scaling field which is related to No, the degree of 
polymerisation. As a result, all critical exponents are related to a single exponent. 
We believe that our approach gives a clear and simple physical meaning of the different 
exponents and fields. For instance, it is shown that the Flory (1969) result for v is 
equivalent to a Curie-Weiss law for the chain susceptibility x. The solution of the 
simple case d = 1 is trivial. The exponents suggested by the present theory fit this 
solution well. Also, the exponents obtained For d 3 4 are the same as those for a 
ferromagnet in a classical mean field approach. 

The present interpretation of SAWS as a critical phenomenon suggests an additional 
meaning for the exponent v in other critical systems. 

Recently, following Mandelbrot (1 977) we defined and measured the local fractal 
dimensionality, LFD (Havlin and Ben-Avraham 1982a, c) of a single polymer chain. 
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The concept was found to be useful for characterising this polymer. LFD is defined as 

where DNo(N) is the LFD associated with a ‘local’ scale of length corresponding to N 
monomers (the full chain consists of No monomers). The quantity (R:)No is the mean 
squared length of a segment of N monomers averaged over the whole polymer chain. 
LFD is a measure of how winding is the polymer in a certain scale N. As No -P CO, 

there seems to exist a range of scales (the ‘main range’) for which LFD tends to be 
constant (see figure l), thus resembling a self-similarity property. Then, fractal 
dimensionality D is defined for the main range by the following equation: 
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F i e  1. Plot of the local fractal dimensionality D,..,,,(N) as a function of N for two- 
dimensional self-avoiding walks, with No = 40, 80, 160, 320. 

The fractal dimensionality D is shown to be related to the end-to-end exponent v by 
D = l / v  (Havlin and Ben-Avraham 1982a). The fact that the exponents v and 1/D 
are equal is by no means obvious. Moreover, the usual end-to-end exponent Y does 
not represent an inrernal self-similarity of the polymer and therefore it does not have 
the meaning of fractal dimensionality (FD). 

The existence of FD is supported by a Monte Carlo enrichment technique (Wall 
et a1 1963). Results are shown in figure 1. It is seen that as No increases, there is a 
larger range with nearly constant D. This result is not restricted to square planar 
lattices but is also present for other dimensions and types of lattice (Havlin and 
Ben-Avraham 1982~) .  

The mean square length can also be expressed as a sum of correlations in the form 
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where ui is a unit vector representing the ith step. Since there is a range of N with 
constant fractal dimensionality, (2)  must hold. Therefore, 

( U ;  . uj+N)N,,= C’ /N2-2u ,  1 << N <( No. (4) 

Indeed, integration of (4) yields 

( R ~ ) N , ~ [ C ’ / Y ( ~ Y - ~ ) ] N ~ ~ .  

We see that the existence of FD implies an algebraic decay law for the SSCF (Domb 
1969, Mandelbrot 1977). 

The algebraic decay law suggested in (4) is characteristic of a correlation function 
when criticality is arrived at. Usually, in critical phenomena the pair correlation 
function that is related to the order parameter is of the form 

r >>one lattice separation. (6)  f ( r i j /S)  

r ii 
g(rij) ==, 

In (6) ,  rji is the displacement vector between sites i and j ,  and 6 is a correlation length 
tending to infinity as T + T,. Since, for SAWS, (RS)$: = rN - N u ,  (4) is similar to (6)  
when 6 + 00. 

Following this resemblance, we assume that (4) plays the same role in the SAW 
problem as (6)  in a general critical phenomenon. It should be noted that this is a 
very restrictive assumption. From this assumption, the physics of the SAW problem 
can be viewed as a critical phenomenon. For instance, it follows that ui is analogous 
to, say, the magnetic moment si of a ferromagnet. Also, the relations among exponents 
are uniquely determined, as we presently show. 

Finally, we extend (4) to the non-critical case by writing, in analogy to (6) ,  

If one regards the SAW as critical, then the correlation length appearing in (7)  
should be of the order of the end-to-end length. That is, 

where v is the known end-to-end exponent. Usually, in critical phenomena we have 

6 - t-”, t = IT- TcI/Tc, (9 )  

where t is the reduced temperature and Y is the correlation length exponent. We 
make an arbitrary identification of the temperature-like field 

t - l / N o  (10) 

so that v in (8) keeps its original meaning. 
Equation (10) can be interpreted in the following way. In the SAW problem, all 

physical results are derived solely from entropy considerations. The only parameter 
which controls entropy and is allowed to change is the degree of polymerisation No. 
Therefore, it is in fact the actual field determining SAW behaviour. We still can say 
that l / N o  is a temperature-like field because of the similarity between (8) and (9) .  
The fact that all fields are related to a single parameter leads to the peculiar result 
that all critical exponents are related to a single exponent. Thus our previous assump- 
tion contained in (7)  relates all critical exponents to Y. 
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According to (lo), criticality is reached when No+OO. When this happens, SSCF 
decays in an algebraic form. Comparing (7) and (4) and keeping in mind that rN - N u ,  
we find that 

(11) 77 = (2 - ~ u ) / u  = 2D - d. 

The meaning of the exponent 7 is easily understood from (7). 
The SSCF, as written in (7), suggests identifying an order parameter 

( U ~ ) ~ ~ - R / N ~ - N ~ Y - ' .  (12) 

The average might be taken over all the configurations of a chain with No steps 
with an end-to-end vector pointing in a certain direction. The order parameter is a 
measure of the polymer length per monomer. The ordering means that different steps 
tend to be aligned. That is, the chain tends to form in a certain direction. 

Using (10) and (12), p follows from its definition (the order parameter exponent) 

p = 1 - u .  (13) 

We argue that the known scaling laws (i.e. relations between critical exponents) 
hold in the SAW problem. A general expression for the free energy density might be 

9 = F / N f '  = N g - 2 g ( ~ N g ) + ~ * h  (14) 

where F is the total free energy and NOd" is a measure of the system's volume. The 
factor N F 2  is required to give the correct meaning of the critical exponent a related 
to the 'specific heat'. The scaling function g(uNg)  is in accordance with the usual 
form derived for the probability of the end of the SAW being at R = N0u (de Gennes 
1979). The last term assumes the usual form of interaction with an external field h. 
We can understand the meaning of the external field h by the following argument. 
The external ordering field tends to align the steps U ;  of the walk. Therefore h should 
be related to a stretching force f applied to the ends of the polymer. The contribution 
to the energy density from f is R f / N f " .  This yields, when compared with U * h, 

h = fNh-d". (15) 

The Kadanoff and Widom relations (Stanley 1972) follow easily from equation (14): 

2-CY = ~ d ,  (16) 

a + 2 p  + y = 2. (17) 

A relation for the exponent 77 can be obtained from the sum rule which gives x, 

Using (7) there results 

y = 42-77). (19) 

uuh'''. (20) 

U = Ni- '4(NgBh) .  (21) 

Finally we derive a relation for the exponent 8, which is defined by 

From this definition and the one for p it follows that 
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One the other hand a usual scaling function for U can be obtained (Pincus 1976, de 
Gennes 1979), 

(22) U = N,"-'+(N,"f) = N:-'+(N,"hNp-' ). 

Comparison with (21) yields the usual relation. 

&3 = v(d + 1 ) -  1. (23) 

We emphasise that apart from a and U all the other critical exponents have neither 
the same value nor the same interpretation as those of the n = 0 vector model. Indeed, 
in the present approach the exponents are related to an order parameter and to critical 
fields which are not the ones in the n = 0 vector model. 

In contrast to general critical phenomena, all critical exponents are related to a 
single exponent. In fact the usual scaling relations are supplemented by either (11)  
or (13), which enables us to express all exponents in terms of U, say: 

p = 1 - v ,  y = 2 ~  + vd -2, 
v(d + 1 ) -  1 

1 - v  ' 
s =  

~ = 2 / v - d .  (24) 

We note that the assumptions leading to (11)  and (13) are consistent, for one can 
derive each of these equations from the other by using scaling relations. 

We show now that the scaling laws concerning the elongation R 'of a chain when 
an external stretching force f is applied to its ends, both for a weak and a strong f 
(Pincus 1976, de Gennes 1979), follow immediately from the present approach. 
Indeed, when f is weak h is weak too. Then using (15), (18) and (24), we obtain 

U XNZh = fNh+Y-d = f N i y - ' ,  (25) 

that is 

R 0: fN:" for a weak f .  

On the other hand, for a strong f (i.e. a strong h )  it follows from equations (20), (21) 
that U is independent of No, so that 

R a N o  for a strong f .  (27) 

Equations (26), (27) are in agreement with Pincus (1976) and de Gennes (1979). 
We can restate the relation for y in (24) as 

v = ( y + 2 ) / ( d + 2 ) .  (28) 

It is interesting to note that the Flory (1969) result for v 

v = 3 / ( d + 2 )  (29) 

follows if y = 1 for every lattice dimension d. That is, the Flory result is equivalent, 
according to the present approach, to the assumption that susceptibility x follows a 
Curie-Weiss law, independent of the lattice dimension. It is in this respect that the 
Flory result is obtained from a mean field approximation (Edwards 1965). 
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We use the Flory relation (29) or y = 1 in order to evaluate all other critical 
exponents 

d - 1  1 
D 

p=l-u=--  4-d 2 
2 + d  D (Y=2v-1=---- d+2-1---’ - 1, 

mi 
\- -, 

2-U 2 d + l  2 0 - 1  rl=2--=-- 1 4-d 
1 - U  d - 1  D - 1 ’  U 3  

a=-- - - 2 - 0 .  

The numerical values for the critical exponents are calculated from (30) and presented 
in table 1. 

Table 1. 

d Y D = l / v  cy P Y S 11 d - 2 + 7  

1 1 1 1 0 1 03 1 0 
3 4 1 1 2 2 2 ;i 5 5 7 1 5 5 
- 3 - 5 - 1 - 2 7 - 1 - 4 3 5 3 5 5 1 2 3 3 
1 - 1 

4 2 2 0 2 1 3 0 2 

The case d = 1 is trivial, with the only possible SAW being a fully stretched chain. 
The exponents predicted agree with this picture. It is obvious that R -No, implying 
that U = 1. The fact that p = 0 means that there is no difference in the ordering 
between the cases of finite No and No + CO. The step-step correlation remains constant, 
in agreement with d - 2 + 77 = 0. The order parameter is constant and cannot depend 
on any field, a fact that is well represented by 8 = CO. 

Also, for d = 4  it is interesting to note that the critical exponents are exactly like 
those derived in a mean field theory. In particular, the fractal dimensionality is D = 2,  
the same as for the ‘ideal chain’, that is, an unrestricted random walk (Mandelbrot 
1977). However, there is a difference between a four-dimensional SAW and a random 
walk. In the SAW, there are still finite correlations between steps. These correlations 
give rise to logarithmic corrections to scaling which are known, from the n = 0 vector 
model (Guttmann 1980)’ to be present (Havlin and Ben-Avraham 1982b). 

The present approach predicts the same exponents U and (Y as those of the n = 0 
vector model. This is due to the fact that the only characteristic length in the SAW 

problem is the end-to-end distance, which must be related to the correlation length 
5, and thus to U. However, we emphasise that fhe other exponents are not identical 
to those of the n = 0 vector model. This is becaussour definition of the order parameter 
does not seem to be related to the order parameter of the n = 0 ferromagnet. 

In the present approach, there is a clear physical meaning to the order parameter 
and to the ordering field. The susceptibility is simply related to the response of the 
elongation of the chain to a stretching force applied to its ends. 

In addition to the usual meaning of the critical exponent U in general critical 
phenomena, in the context of the SAW problem, U is a measure of the fractality of 
the system. That is, the SAW has a fractal structure with an FD equal to 1 / u .  This 
suggests a possible interpretation of U in other critical phenomena as being an indication 
of a fractal structure. For example, in the case of a ferromagnet, the length 5 of the 
patches of spins pointing in a certain direction grows as t-” (Ma 1976). But we may 
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interpret the patches as having a fractal structure. This means that they possess a 
self-similarity property, as for example in a Sierpinski sponge (Mandelbrot 1977). 
Moreover, this interpretation explains the scaling law in the Kadanoff (1967) transfor- 
mation for the order parameter in a ferromagnet 

L ~ ( ~ )  - L ” ( ~ ) .  (31) 

Here, L is the block size, ((T) is the original magnetisation, and ( p )  is the renormalised 
magnetisation. Each side of (31) displays the total amount of magnetisation in a 
block. The left-hand term is the usual expression, whereas the right-hand term is 
calculated assuming that ( p )  follows a fractal pattern of dimensionality x = 1 / u  =D. 
Thus, L” = L” is the effective volume of the renormalised magnetisation ( p ) .  It is 
interesting to note that if one accepts the above interpretation, then U should have a 
limit 

u 3 l/d. (32) 

This is due to the fact that the fractal dimensionality cannot exceed the Euclidean 
dimension of the lattice, d. 

Finally, we note that the SAW problem is a finite scaling problem. Indeed, the 
number of monomers No is finite. We can show the consistency of our model of SAWS 
with finite scaling by using the above interpretation of U as fractal dimensionality. 
For example, the susceptibility in finite scaling theory (Fisher 1971) is given by 

(33) 

where n = L is the size of the sample. If we understand 1 / u  = D  as FD, then L” =No 
is the effective number of spins in the system. Then (33) reads x - N &  exactly as 
does (18). The same argument also applies to other critical exponents. However, 
there is a difference between the SAW as a critical problem and finite systems. In 
finite systems, criticality is reached with No + 00 and t + 0, whereas in a SAW, it suffices 
that No + CO because No is the only parameter governing SAW behaviour. 

1 l v  Y x - ( n  ) 
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