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Corrections to scaling in self-avoiding walks
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Corrections to scaling, as well as the critical exponent v, are calculated for self-avoiding walks,
with the use of a new highly accurate method based on fractal dimensionality. Numerical
results are obtained for 2, 3, 4, and 5 dimensions and are shown to be in excellent agreement

with the prediction of the n =0 vector model.

The analogy between self-avoiding walks (SAW’s)
and critical phenomena through the n =0 vector
model'~3 has provided the motivation for extensive
investigation of their statistical properties.""** Special
effort has been devoted®’ to obtaining the critical ex-
ponent v which is related to the mean-square end-
to-end distance. However, there is still no con-
sensus® on the value of v, and the situation is even
worse regarding the corrections to scaling.’

In this paper, we present a method for finding the
value of the critical exponent v, as well as its scaling
corrections. The method is based on the concept of
fractal dimensionality,? as recently applied® to poly-
mer chains.

The critical exponent » for SAW’s is related to the
end-to-end distance (R,%o) through

(Ri,)/?=AN¢§ | )

where N is the total number of steps. A reasonable
assumption is that (1) can be extended to internal
distances through the scaling relation

((R#YN)*=N"p(x), x=N/No , @

where (R#?) No is the mean-square distance of all in-
trachains consisting of N steps in a SAW having a to-
tal of N steps.

In order to justify this assumption, we used the
concept of local fractal dimensionality? (LFD), de-
fined according to the ideas presented by Mandel-
brot,? as
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Applying this definition to (2) yields
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Accordingly, DNO(N) should scale for SAW’s with

different No. Indeed, measurements of SAW’s, com-
puter simulated by the Monte Carlo enrichment tech-
nique, '° traced in a square (d =2) lattice, seem to
confirm the scaling assumptions (2) and (4). In Fig.
1, we plot LFD for sets of SAW’s with different Ny
as a function of x. It appears from the figure that
DNO(N ) is a function of x alone, and results for dif-

ferent Ny fall on the same curve.

It is also seen from Fig. 1 that for quite a wide
range of x, LFD is nearly constant. The value of
LFD in this range is defined as the fractal dimen-
sionality (FD) of the SAW’s. The FD is a measure
of how winding is the walk on most scales of length.
Moreover, the mere existence of FD shows that the
chain possesses a statistical internal self-similarity.

We now consider a more accurate analysis of LFD
by means of more refined measurements of LFD of
SAW'’s traced on two-, three-, four-, and five-
dimensional lattices. These more accurate calcula-
tions clearly exhibit deviations from scaling. We find
that these deviations can be explained by the same
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FIG. 1. Plot of DNO(N) as a function of x = N/N, for

10000 SAW’s with No=80, 160, and 320 in d =2 dimen-
sions.
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argument which lead to (2). It is known that there
are corrections!!? to the mean-square end-to-end
distance law (1) through the analogy with the n =0
vector model. The corrected expression!® has the
form

(RR)*=AN§ (1+bNG?) . Q)
The generalization of this equation to internal dis-
tances yields'*

((Rz\zr)No)l/z:N"(l+bN"A)p(x), x=N/Ny . (6)

Using the definition of LFD, we obtain

bA dInp(x)
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The first two terms are in complete analogy with the
effective critical exponent A, ¢ in Ref. 12 when b is
neglected compared to N2. The last term in (7)
stems from the fact that we consider finite SAW’s
(N, finite). Indeed, for finite N, this term vanishes
when No— o [note that p(x — 0) must be finite].
Moreover, for No— o and a finite N >> 1, the
second term also vanishes and we regain the fractal
dimensionality of the SAW.

The fact that the second term in (7) does not scale
with Ny, whereas the third term does, simplifies the
analysis of numerical data. We seek first for the best
values of b and A such that [Dy (N)1™'+ b4/

(N2%+b) converges to the scaling function
v+xdInp(x)/dx = f(x). Then, extrapolating f(x)
to x — 0 gives the value for v. This kind of analysis
yields v=0.753 £0.004, A=1.2 £0.1 for SAW’s on a
square (d =2) lattice and v =0.588 +0.003,

A=0.50 +0.05 for SAW’s on a simple cubic (d =3)
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FIG. 2. Comparison between Eq. (7) and numerical data
for 10000 SAW’s traced on a two-dimensional lattice, using
v, b, and A from Table I, for Ny= 80, 160, and 320. The
circles represent the numerical data.
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FIG. 3. Comparison between Eq. (7) and numerical data
for 10000 SAW'’s traced on a three-dimensional cubic lat-
tice, using v, b, and A from Table I, for No=80, 120, 160,
240, and 320.

lattice. Figures 2 and 3 show the excellent agreement
between (7) using these numerical values and the
numerical data obtained from simulations for d =2
and 3, respectively. In Fig. 4, we plot LFD as ob-
tained from (7) for SAW’s in 4 = 3 using different
values for v. The figure shows the high sensitivity
obtained in the determination of v.

For the SAW problem d =4 is the critical dimen-
sion! and corrections to scaling are logarithmic.
From the analogy with the n =0 vector model,'> 16

((RRYng) 2 N2 [In(aN)V¥]p(x) . ®)

We analyzed, recently,!” numerical data for SAW’s in
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FIG. 4. Plot of LFD from numerical data, for SAW’s
(No=120, 240) traced on a simple-cubic lattice, and b and A
from Table I but (a) v=0.588 and (b) » =0.590.
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TABLE 1. Numerical results and theoretical predictions for the critical exponent v and the
corrections to scaling parameters for different lattice dimensionalities.

d v (numerical) v (theory) A (numerical) A (theory) b (numerical)
2 0.753 £0.004 0.752 1.210.1 1.2 —-0.08 £0.03
3 0.588 £0.003 0.588 +0.001° 0.5 +£0.05 0.47 £0.03° —0.16 £0.04
4 0.500£0.002 0.5° 0.123 £0.012 +f

2Exact result of B. Nienhuis, Phys. Rev. Lett. 49, 1062 (1982).

YFrom Ref. 11.

‘References 15 and 16. The parameter a is estimated numerically (best fit), a =1.1 £0.3.

a four-dimensional hypercubic lattice, assuming

a =1, and thus found for the confluent logarithmic
exponent A=0.125 £0.010. Working on further data
and not assuming anything about a, we have found
a=1.12%0.3and A=0.123 £0.012. In Table I, we
give the numerical results and make comparison to
theoretical predictions for the critical exponent v and
the parameters of the corrections b and A, for SAW’s
traced on hypercubic lattices with d =2, 3, and 4.
The agreement between our numerical estimates and
those of the n =0 vector model is evident from this
table.
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FIG. 5. Plot of (D'~ )N against VN for 10000
SAW’s (Ny=240) traced on a five-dimensional hypercubic
lattice.

For dimensionalities d = 4, the SAW problem is
solved by mean-field methods (through the n =0
vector model analogy). For d =5 it is found!® that

+—_t+—, 9)

a_1

where the effect of p(x) is neglected.’® In order to
check Eq. (9) we plotted (Fig. 5) (D~'— %)N against
VN. A linear relation is found as expected, with
b,=0.077 £0.002, 5,=0.079 £0.003. In Fig. 6 we
show the excellent agreement obtained between Eq.
(9) with the above values of b, and b,, and the nu-
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FIG. 6. Comparison between Eq. (9) and numerical data
for 10000 SAW’s (Ny=240) traced on a five-dimensional

hypercubic lattice.
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merical data. It should be noted that there was no
need to use the enrichment technique method in the
five-dimensional case, and this is since the attrition
of samples is very small.

To summarize, we have presented a very accurate
method® for obtaining the critical exponent » and its
corrections to scaling in SAW’s. The numerical
results presented in Table I are in excellent agree-
ment with theoretical predictions of the n =0 vector
model, confirming the analogy between this model
and SAW’s. We note that p(x) seems to have a
smaller effect on LFD for higher lattice dimensionali-
ties d, whereas the corrections to scaling increase
with d. The universality of the correction parameters

b and A for different lattices remains to be checked.
Finally, we suggest that a similar kind of analysis may
be applied to percolation and spin systems (i.e., Ising
ferromagnet) to obtain corrections to scaling.
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