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Abstract. It is shown that the strong short-range interactions which exist in hydrogen bond
ferroelectrics, produce strong anisotropy in the wavevector (¢) dependence in the polaris-
ation fluctuations in these systems. It is suggested that this anisotropy is the origin of the
observed strong suppression of neutron intensity with wavevectors pointing along the
ferroelectric axis of KD,PQ,. Calculations of the g-dependent susceptibility has been made
using an Ising model which includes four spins per unit cell representing the motion of the
four deuterons surrounding each PO, group. The short-range spin—spin interaction repro-
duces the known energies of the different hydrogen bonds configurations in KD,PQ,. The
neutron scattering is then calculated using the mean-field approximation, and the anisotropy
of the scattering is found to be in good agreement with experiments. Finally in the ice-rule
limit of the model, the scattering has a dipolar singularity as ¢— 0.

1. Introduction

Many theories of the phase transition and physical properties of KH,PO, (KDP) have
been developed by assuming that the dominant interactions are the short-range inter-
actions between the protons. These interactions have been taken into account by models
of the energies of the proton configurations (Slater 1941, Silsbee eral 1964) or by
pseudo-spin models with strong short-range interactions (Tokunaga and Matsubara
1966, Blinc and Svetina 1966, Vaks etal 1975). In contrast the results of quasi-elastic
neutron scattering experiments in KD,PO, (Paul et a/ 1970, Skalyo et a/ 1970) have been
interpreted as providing evidence for the existence of strong long-range dipolar inter-
actions in these materials. In fact the wavevector dependence of the scattering has been
interpreted in terms of a model of strong long-range dipolar forces and relatively weaker
short-range forces.

In this present paper we suggest that a large part of the anisotropy in the scattering
may arise from the strong short-range interactions between the hydrogen bonds. The
wavevector dependence of the scattering is calculated from a pseudo-spin Ising model
of KDP similar to that previously discussed by Montgomery and Paul (1971) and by
Elliott and Young (1974). These earlier treatments did not however correctly take
account of the ‘Slater configuration’ of the four protons surrounding each PO, group.
When these are included the result is a strong anisotropy of the wavevector dependence
of the scattering which is very similar to that observed experimentally.

0022-3719/82/296057 + 10 $02.00 © 1982 The Institute of Physics 6057



6058 S Havlin, R A Cowley and H Sompolinsky

A similar anisotropy in the scattering from copper formate tetrahedrate has been
observed by Youngblood and Axe (1978), and associated with the strong correlations
between the hydrogens caused by the ice rules. Using an exact solution to the six-vertex
model, Youngblood et al (1980) and Youngblood and Axe (1981) were able to show
that when the ice rule constraints were imposed on the hydrogen positions a singular
scattering cross-section resulted at small wavevectors. They then phenomenologically
extended their results to cases when the ice rules are weakly broken.

Our results are essentially similar except that we do not present an exact solution but
show how the results can be obtained at least approximately by using standard tech-
niques, as developed in the next section.

KDP is a relatively complicated material with four different types of hydrogen in
each unit cell. Initially therefore we discuss in § 3 another model of a two-dimensional
ferroelectric material in which it is possible to carry out the analysis in detail analytically,
and which is similar to that used by Youngblood and Axe (1981). In the fourth section
we describe similar calculations for DKDP and summarise the results in a final section.

2. Theory of the scattering

The system is assumed to consist of an arrangement of hydrogen bonds such as those
shown in figure 1. The position of the hydrogen atom in each bond is specified by a spin
Z(Ix) describing the location of the atom of the xth type of bond in the /th unit cell. It is
assumed that the position of neighbouring hydrogen atoms are correlated by short-range
interactions so that the Hamiltonian of the system is written in general as

# == 2I)ZCIZ (). M)
KK’
This Hamiltonian can be written in terms of the Fourier transforms
Z =S Z0n) ex [ ig - R(IK)] )
(0 =—77%4 pl- iq
where R(Ik) is the position of the /x atom, as
1
%:—-———EED(KK',q)Z(K’,—q) (3)
2N xx q
where
D(xx', q) = 2 J(k) expliq - (R() = R()]. @

It is convenient to define a susceptibility matrix:

X(KK’, q) = ﬁ(Z(K’ q)Z(K/7 _q)> (S)

where f is the reciprocal of the temperature, 1/kg7, and which can then be obtained
using the mean-field approximation (Brout 1965) from the matrix equation

2 [0 = B+ D(x’, g XK', g) = B (6)
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The scattering for a wavevector transfer @ can then be obtained from the susceptibility
at high temperature as

1
1Q) = 5 & F QF(K', ~ (', 9AQ@ = @) ™
where, if F(/x) is the scattering amplitude associated with the (/x) bond,
F(x, @) = 2, F(Ix) expli(Q - ¢) R(K)] ®

and A(Q — ¢) is zero unless Q — g is a reciprocal lattice vector, 7.

-2u0) =20 2U-Lvin)
0 o 2U+4V
(b

Figure 1. A two-dimensional model of a system of interesting hydrogen bonds. (a) the
structure; (b) the energy of several Slater configurations.

Alternatively it is sometimes convenient to diagonalise the D(kk’, ¢) matrix to give
the eigenvalues D(gj) and eigenvectors E(k, gj), in terms of which the amplitudes of the
normal mode Z(gj) are given by

Z(x, q) = 2 E(x, 4/)Z(g)). )

The susceptibility of each mode is then defined by

x(q)) = KZ(gZ( —qj) (10)
and is given by the mean-field theory as

x(q)) = B/(1 — BD(q))). 1)
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The scattering is then given by
1 . N
1(Q) = 5.2 FQDF( - 0)xa)AQ - a) (1)

where

F(Qj) = 2 E(k. /) F(x, Q). (12)

3. A two-dimensional model

The model consists of chains of hydrogen bonds along the x and y axes as illustrated in
figure 1(a). The interaction between the hydrogen atoms is specified by J(%) =U
between neighbouring hydrogen atoms on the same chains, and by =V when the
neighbouring hydrogen atoms are on different chains. The positive sign occurs if
Z(l,x) = Z(I'x') = 1 and corresponds to only one of the hydrogen atoms close to the
intersection of the chains and the minus sign in the other cases. The energies of the
different configurations which can occur at an intersection are shown in figure 1(b). The
model has two hydrogen atoms, k, in each unit cell and it is convenient to label them x
andy.
The matrix D(kxk’, ¢) then becomes

D(xx,q) D(xy,q) _[2U cos(g.a) -4V sin(g,a/2) sin(g,a/2)
D@yx,q) D(y,q) -4V sin(q,a/2) sin(g,a/2)  2U cos(g,a)

and the susceptibilities become:
Hxx,4) = 5 (1 = 2BU cos(g, )

x(xy, q) = (B/D)(4V sin(q.4/2) sin(q,4/2))

%0y, @) = (BD)(1 = 2BU cos(q.a)) (13)
where
D =1-4BV* + (43*V?* = 2BU) (cos(g.a) + cos(g,a))

+ (4B°U2 — 42V?) cos(q.a) cos(g,a).
These expressions become particularly simple if ¢ = (g, 0) when:

x(xx, ) = /(1 — 2BU cos q)

X0y, 9) = B(1 - 280)

x(xy,¢) =0

whereas if ¢ = (0, g) then y(xx, g) = §/(1 — 2BU) while x(yy, q) = /(1 — 28U cos q).
These results illustrates that x,,(g) is not an isotropic function of {g) but can be expected
to be quite anisotropic. Close to a phase transition the susceptibility is large, so that
(1 - 28U) is small compared with BU. In figure 2 we show x(xx, ¢) for different values
of the parameters Uand V.
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Figure 2. Constant contours for the susceptibility, Figure 3. Constant contours for the susceptibility
x(xx,q), for the two-dimensional model and 3(x(xx, @) + x(vy, q) + 2x(xy, ¢)], for the two-
2BU=0.95 and (a) V=U, (b) BV =04, (¢) dimensional model with 28U = 0.95 and (a)
V=0 V=U(b)pV=04,(c)V=0.

The scattering for this type of system is given by equation (7). If we consider a phonon
system and consider the scattering around a reciprocal lattice vector, 7, along the x axis,
F(y, Q) is negligibly small compared with F(x, Q), which is then assumed to be indepen-
dent of Q. The scattering is then proportional to y**(¢) which is shown in figure 2. The
scattering is independent of g, when g, = 0 for all values of the ratio V/U. This s a result
of the energy of the vertices being independent of the orientation of the aligned chains
as shown in configurations (i) and (ii) of figure 1(4). In the model we have further
assumed, unrealistically, that Z(/k) is a continuous variable. Consequently the model
gives identical energies for all values of g, although in practice we might expect that the
intensity would decrease as |g,| increases because Z(/x) is limited to +1. In the case
V = 0 the scattering is independent of g,, but for positive V < U the scattering becomes
pinched in when g, = 0. Clearly the scattering is very anisotropicin g.

A similar pattern is obtained if Q is along the y axis but in this case the x and y axes
in figure 2 must be interchanged. A very different set of patterns may emerge if the
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scattering is determined near a lattice point along the (110) direction when F(x, Q) =
F(y,0) = F and the scattering is proportional to 3(x(xx, q) + x(yy, q) + 2x(xy, ¢)),
which is shown in figure 3. In the isotropic case U = V, the scattering pattern is similar
to that given by x(xx, ¢) except rotated by 45°. This is essentially because the vertex (iii),
figure 1(b), has the same energy as vertices (i) and (ii) and because Z(l/x) is allowed to
be a continuous variable. When V = 0, the pattern has fourfold symmetry corresponding
to the scattering from decoupled linear chains while a more complex pattern results for
intermediate values of V.

The results are essentially similar to the low-¢ results obtained by Youngblood and
Axe (1981) in their model when they allow for violations of the ice rules. Our model
corresponds in their notation to allowing longitudinal fluctuations in the polarisation,
D # 0. The fact that our result reduces to this shows the success of the mean field
arguments of § 2 in reproducing the correct functional form for the scattering. This form
of scattering has been observed in copper formate tetrahydrate (Youngblood and Axe
1978).

4. The model of KDP

The structure of KDP isillustrated in figure 4 and there are four hydrogen bonds in each
unit cell (k= 1. ..4). The interactions are between neighbouring hydrogen atoms and
symmetry allows us to reduce the J(%,)to only two values

by =it =v
and
Jh)y =1 =J%) =J() =

as illustrated in figure 4. Each hydrogen bond interacts with the three other hydrogen
bonds in the same cell and three others in an adjoining cell. The constants U and V can
be related to the Slater energies & and ¢, of the PO, units as:

4U = =2 + 2¢g and 4V =2¢e — g

where & and & are known to be approximately 90 K and 800 K respectively (Havlin et al
1976, Sompolinsky and Havlin 1977, Havlin and Sompolinsky 1981).

The matrix D(kx’', ¢) can be simplified by a unitary transformation shown in figure 5
which corresponds to moving the hydrogen atoms. The resuit is

0 C G G
c, 0 ¢Cs C
D(kx',q) = Al v
¢, Cy 0 G
C: Cs Cg O
where
Ci = 2U cos(zny) C, =2V cos[(/2)(n, — ny + M2)]
Cs =2V cos[(/2) (s + 1y + )] Cs =2V cos[(a/2)(n< + ny + 1))

Cs=2Vcosl(@2) (e~ my=n)]  Co= 2Ucos(am,)
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Figure 4. z-axis projection of the hydrogen bonds connecting K-PO, groups showing the
different labels of the four pseudospins.

w
=~

(b)

Figure 5. The hydrogen bonds in one unit cell are shown in figure 5(2). The unitary trans-
formation used in obtaining equation (9) changes the coordinates of the hydrogen bonds of
figure 5(a) to the structure described in figure 5(b).
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Figure 6. The wavevector dependence of the four eigenvalues of the interaction matrix. The
lower part of the figure shows the enlargement for J' and J2.

and g.a = 271, qya = 27, and g.c = 2n,. The matrix D(kk’, ¢) can be diagonalised
to obtain the eigenvalues and eigenvectors and the results for the eigenvalues D(gj) are
shown in figure 6. The ferroelectric fluctuations are associated with the lowest eigen-
value, J(gl). The results, shown in figure 6, show that J(q1) is very anisotropic for small
g and this is confirmed by a small-q expansion of J(¢1) which gives

J(ql) = J(01) - 2Vnz = (U + V) (1} + 1), (14)

Using the Slater energies to obtain the coefficients of n; and (9 +m) gives
(U + V)/V = 0.05. Consequently the eigenvalue increases and susceptibility decreases
with increasing 77, much more rapidly than with increasing ; or 7,.

It is of interest to examine the form of J(g 1) in the limit that the ice rules are exactly
obeyed U— —», Vo +x, U+ V=¢g. In this case the expansion given in
equation (14) is no longer valid and a more careful analysis gives

A
= - + .
T =00 =V e+
Thus the ice rules lead to a singularity as ¢ — 0 in the eigenvalue which is similar to that
produced by long-range dipolar forces (Paul et al 1970).

This behaviour is illustrated in figure 7 which shows the anisotropic behaviour of
J(q1) for KDP calculated both if the ice rules are satisfied and using the Slater configur-
ations to estimate the parameters. The two models give very similar results except for
small ¢ where the former have a singular behaviour which the latter do not. This
anisotropic behaviour ofJ(g1)is reflected inan anisotropic behaviour of the susceptibility
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Figure 7. Constant contours of J'(g) — J'(0) for: (a) the parameters U + V = 45K and
V = 860 K estimated from the energies of the Slater configurations: and (b) in the ice-rule
limit U+ V=45K,V— =,

and scattering cross section. This anisotropic scattering has been observed in DKDP
(Paul et al 1970, Skalo et al 1970), and the magnitude of the anisotropy is very similar to
that which is obtained from equations (11) and (14) and figure 7. The origin of this
anisotropy cannot therefore be immediately attributed to long-range dipolar forces but
may arise from short-range ice-rule constraints on the position of the hydrogen atoms.

5. Summary

We have shown that strong short-range interaction between the hydrogen bonds in
ferroelectrics can give rise to very anisotropic critical scattering as observed in copper
formate tetrahydrate and in DKDP. As pointed out by Youngblood and Axe (1981),
the suppression of the ferroelectric fluctuations along certain directions is not necessarily
the result of long-range dipolar forces but may result from short-range correlations.
Numerical calculations including only short-range interactions reproduce the magnitude
of the anisotropy which has been observed experimentally.

These results were obtained using the mean-field approximation. They are, however,
of the same form as those found using exact calculations and phenomenological argu-
ments by Youngblood and Axe (1981) and by using cluster models by Havlin and
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Sompolinsky (1981). We therefore believe that the functional forms are not greatly
changed by more rigorous calculations even if the numerical results change in detail.

Since in practice the ice rules are not satisfied exactly it is possible to determine the
magnitude of the anisotropy induced by the dipolar forces and by the short-range forces
separately, by a careful measurement of the form of the scattering at small g. Our
calculations, figure 7, suggest this is impossibly difficult using the available resolution of
a neutron scattering experiment but may be possible using high resolution x-ray scat-
tering techniques.
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