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Abstract. The probability density of the displacement or end-to-end distance of a random 
walk on the incipient infinite percolation cluster in d = 2 dimensions is studied by an exact 
enumeration method. Our numerical data suggest specific forms for the probability density 
both in the chemical distance variable I and the geometric distance r. 

The problem of diffusion on fractals and other models for disordered and amorphous 
media is one of considerable current interest (Mandelbrot 1982, Alexander and Orbach 
1982, Ben-Avraham and Havlin 1982, Gefen er a1 1983, Pandey and Stauffer 1983, 
Havlin et a1 1985a). Recently both Banavar and Willemson (1984) and O’Shaughnessy 
and Procaccia (1985) proposed a form for the probability density of displacement on 
a Sierpinski gasket and suggested that it had wider application to disordered fractal 
structures. In this letter we present data based on the exact enumeration method 
(Ben-Avraham and Havlin 1982, Majid et a1 1984, Havlin er a1 1984) that strongly 
support a different form for the probability density of displacement. 

Two metrics have been found useful for the characterisation of distance on a fractal 
(Havlin 1984). One of these is obviously the geometric distance, r, and the second is 
the chemical distance, 1, defined as the shortest distance between two points as measured 
along the structure (Havlin et a1 1985b, and references cited there). The probability 
densities for displacement of a diffusing particle in these two metrics will be denoted 
by P(r, t )  and P(1, t )  respectively, where, for example, P(r, t )  d r  is the probability 
that a diffusing particle is at a geometric distance between r and r + d r  from its starting 
point, at time t. 

In the present investigation an infinite percolation cluster at the critical concentra- 
tion was generated on a two-dimensional rectangular lattice (Stauff er 1979, Alexan- 
drowicz 1980). Statistical properties of the resulting random walk were obtained using 
the exact enumeration method (Havlin et a1 1984). The exact enumeration method 
consists of setting a 0 at each lattice point belonging to the cluster and a 1 at the 
starting point of the random walk. The second step replaces the 0 at each cluster point 
neighbouring the origin by I / n ,  where n is the number of such points, and replaces 
the origin by a 0. Thus the random walker must move at each step. Successive steps 
repeat the procedure by dividing each non-zero entry equally among nearest-neigh- 
bouring points that belong to the cluster. At any step number the probability distribution 
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for the location of the random walker is given by the numerical value at each lattice 
point. Thus, the method is exact for a random walk on any given cluster, but an 
average must be taken over a set of clusters to provide a reliable estimate of the 
probability distribution. Our results are based on averages taken over 1000 clusters 
with up to 2500 steps on a cluster. 

We will assume that P ( r ,  t )  and p(1, t )  are normalised by 

/ o x P ( r , t ) d r =  lo= P ( l , t ) d l = l .  

The exponents d ,  and d k  are defined by the relations 

( r ) d -  - t ,  ( r ) d d  - t (2) 

and d,  and df are the intrinsic and fractal dimensions, respectively (Vannimenus et a1 
1984, Havlin and Nossal 1984). The normalisation condition in (1) and the exponents 
in ( 2 )  allow us to suggest that P ( r ,  t ) r  and p(1, t ) l  can be written in terms of the scaled 
variables x = r /  t ‘ l d * ,  y = 11 t ”* ;  as 

P( r, t ) r - x d f F (  x ) , F (  1, t ) l -  y d ‘ G ( y )  (3) 

where d , / d k  = d , /d ,  = d l 2  and d is the fracton dimension (Alexander and Orbach 
1982). Our data were found to scale according to the relations in (3) for 5 r s  150, 
10 s 1 s 100, and 1 0 0 s  t s 2500 as can be seen from figures 1 and 2. The best scaling 
was obtained with the use of d ,  = 2.87 1 0.05 and d 1, = 2.47 i 0.05 in very good agreement 
with previous estimates of these exponents (Majid et a1 1984). If we furthermore 
assume the following functional forms for F ( x )  and G ( y )  

F ( x )  =exp(-ax“)  G ( y )  = exp(-byP) (4a 1 

a = 1.6510.10, p = 1.9010.10 (4b) 

we obtain a best fit to the data with exponents 

where the limits on a, p, d ,  and d k  were determined by varying the parameters and 
observing the quality of fit. The theoretical (full) curves in figure 1 were calculated 
using the ansatz of (4) in (3). It should be noted that the data for P ( r ,  t )  are shown 
in averaged form. That is to say, each data point in figure 1 represents an average 
computed from five values of r that are close together. In contrast, the data points in 
figure 2 are raw data, suggesting that the chemical distance, 1, is the more natural 
metric for the study of transport on percolation clusters. 

The forms for P( r, t )  and P( 1 , t )  whose form and parameters have been found in 
the present investigation are consistent with the conditional density for the distribution 
of r given the value of 1 recently found by us (Havlin et a1 1985b) which has the form 

p ( r l  I )  = A U ~  exp(-au’), U = r / l i  ( 5 )  

through the integral relation 

P ( r ,  t ) =  p(rlf)p(I, t ) d l  lo= 
which must be evaluated approximately, using an expansion around the maximum of 
the functi_ons appearing in the exponent. The exponents appearing in (5) are E =  
2.5 1 0.3, S = 9.8 * 0.5, v’ = 0.88 1 0.02. Substituting (5) and the function P( I ,  t )  in ( 6 )  
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Figure 1. Plot of @(I, t )  against l / f l ’ d L  for different values of I and 1. The different signs 
represent different number of steps r = 1000 (0), t = 1500 (U), f = 2000 (A), t = 2500 (0). 
The range of 1 is 10s I <  100. The full curve represents the best fit to equations (3) and (4). 
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Figure 2. Plot of rP( r, 1) against r /  f l ’ d w  for different values of R and t. The different signs 
represent different number of steps: t = 1000 (O), t = 1500 (U),  r = 2000 (A), r = 2500 (0). 
The range of r is 10s r s 150. The full curve represents the best fit to equations (3)  and (4). 
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one obtains the following relation between a and p 
a = p i / @  + iir). (7) 

This relation is consistent with the values found numerically for a and p (Havlin et 
a1 1985b). Very recently Banavar and Willemson (1984) and O'Shaughnessy and 
Procaccia (1985) suggested that the form of P(r, t )  for fractals is 

p ( r ,  t )  - t-dddwrdf-1 exp(-ard-/ t ) .  (8) 

Thus, for the case of percolation they predict a = d ,  = 2.87 (Majid et a1 1984) which 
is quite different from our value a = 1.65 kO.1. The disagreement between our result 
and these theories does not seem to follow from the relatively short time range ( t  s 2500) 
for which the simulation was performed. The present good fit to a scaling function 
indicates rather that the results are already convergent to the appropriate P ( r ,  t )  and 
p(1, t ) .  We suspect, rather, that the theories leading to (8) did not take into account 
the effect of the random time spent by the random walker in exploring dead ends on 
the fractal. Indications that such effects lead to anomalies in the t dependence 
appearing in the exponent of (8) will be submitted shortly. 

Very recently a different theory for the form of P(r, t )  was presented by Guyer 
(1985). In this theory the value of a is predicted to be a = d,/(d,- 1). For percolation 
it is found that d, = 2.87 and therefore a - 1.53 in agreement with our value of a. 

The present approach (equations (3) - (7) )  leads to an interesting prediction for the 
probability density of random walks on self-avoiding walks in two and four dimensions. 
Since for d = 2, Y' = v,,, =a, p = 2 and s'( 1 - ; ) - I  = 4, it follows that a = f ,  i.e. p (  r, t )  - 
e x p ( - ~ r ~ / ~ / t ~ / ~ ) .  For d =4 ,  Y'=$, p = 2 and s '=2 .  Thus a =!, i.e. p ( r ,  t )  - 
exp(-ar"/'/ t"3).  
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