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Abstract. We present a new method for growing and analysing diffusion-limited aggregates 
(DLA) .  The method is based on the exact enumeration approach which enables us to 
calculate exactly the probability density of a random walker starting from an outer circle 
(at r =  r , ) .  The method yields the exact growth probabilities, p , ,  of the perimeter sites, i, 
for a given configuration as a function o j  time. We study the histogram, n ( p ) ,  i.e. the 
number of perimeter sites having growth probability p, as a function of time, for several 
different boundary conditions. Our results suggest that the fluctuations in the survival 
times of the particle are very small compared with the large fluctuations in the growth 
probabilities. We find that at times of the order of r: all growth probabilities are essentially 
converged. Very long survival particles have only a negligible effect on the histogram n ( p )  
and thus on the DLA structure. 

The study of growth processes and aggregation has been a subject of considerable 
interest in recent years [l-51. Much effort has been invested to study the diffusion- 
limited aggregate (DLA) model introduced by Witten and Sander [ 6 ] .  This is because 
the DLA model provides a simple example for a variety of phenomena in which the 
diffusion process is the dominant mechanism in the growth. The model is easy to 
formulate and shows the essential surprising features of fractal growth [3]. 

In this letter we present a new method for growing and studying DLA-type aggregates. 
The method is based on the exact enumeration method which was found useful in the 
study of diffusion in disordered media (for a recent review see [7]). The method 
enables us to enumerate exactly the probability density as a function of time of a 
random walker starting from an outer circle. In this method the growth probabilities 
for a given cluster configuration are determined exactly. The method is used to study 
several growth properties such as the time-dependent growth probability, the effect of 
the size of the outer circle, and the effect of different boundary conditions on the outer 
circle (absorbing or reflecting). Our results show that the fluctuations in the convergence 
times of the growth probabilities to their stationary values (characteristic survival times) 
are very small compared with the large fluctuations in the values of the growth 
probabilities. 

The usual growth process is based on an external source of diffusing particles that 
aggregate on the cluster when they touch it. At the beginning one particle (a seed) is 
placed at the origin. Then particles are released one after the other from random 
positions on an outer circle or radius rl enclosing the seed (cluster). Each particle 
moves in a random walk fashion until it reaches a neighbouring site of the aggregate 
and becomes part of the growing cluster. At r = r2> rl an absorbing boundary is set 
and if a particle visits a site at distance r > r2 > rl from the seed it is absorbed. 
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Our growth method is based on simulating the above process using the exact 
enumeration method for diffusion [7]. The key of the exact enumeration procedure 
is that the probability of a random walker being at site i at time t is determined solely 
by the probabilities of being at the nearest neighbours of site i at time t - 1 .  At t = 0 
a seed particle is fixed at the origin and at sites in the outer circle of radius rl numbers 
equal to 1 are uniformly distributed. The value 1 represents the probability of a random 
walker to be at rl in t = 0, i.e. P ( r l ,  0 )  = 1 (see figure 1).  For a square lattice we use 
iteratively the equation 

P(x, y ,  t )  =i[P(x-l ,  y ,  t -  l )+P(x+l ,y ,  t - l)+P(X, y -  1,  t - l)+P(x, y +  1 ,  t -  l ) ]  
( 1 )  

to find P(r ,  t )  for any position r and time t. Equation (1 )  is used subject to the 
boundary conditions: (i)  P ( r 2 ,  t )  = O  and (ii) each site on the perimeter r = r of the 
cluster is absorbing and thus P (  r, t)  is regarded as zero in the right-hand side of ( 1 ) .  
The quantity P (  r, t )  is accumulated and represents the growth probabilities up to time 
t of the perimeter sites located at r. A new site is chosen to grow randomly according 
to these probabilities and the process starts from the beginning, t = 0, as illustrated in 
figure 1.  We choose the time t for growing a new site such that P(r ,  t)  reaches a 
plateau for all r. In figure 2 we compare the time-dependence growth probabilities of 
several tip sites and fjord sites. It is seen that the large probability at the tip and the 
small probability at the fjords reach the plateau essentially at the same relatively short 
times. An interesting feature of our results which is also seen in figure 2 is the fact 
that, although there is a factor of lo6 between the growth probabilities, the ratio between 
the convergence times to the asymptotic values (survival times) is less than two. Indeed 
we find that for times of the order of r: essentially all growth-sites probabilities reach 

Figure 1. The DLA cluster (500 sites) grown using the exact enumeration method described 
in the text. The circles represent the boundary conditions used for the iterations of equation 
(1 ) .  The outer circle at r = r2 ,  as well as the perimeter sites of the DLA cluster, are absorbing 
boundaries. The inner circle at r = r l  is under the condition that P ( r , ,  0) = 1.  For our 
numerical simulations we used a square lattice and the actual position of the ‘ones’ could 
not be taken exactly on the inner circle rl. We therefore chose lattice sites which are 
closest to rl . The larger is the cluster so the radius rl is taken larger and the deviation 
from an exact circle becomes smaller. 
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Figure 2. Plot of p , (  r ) / p , ( c c )  as a function of time for several fjord and tip sites. The . . . 
and - . - . -  curves represent fjord sites with growth probaoilities: ~ , ( c o )  = 1.1 x 
and 5.2 x IO-' respectively. The - - - - - and --- curves represent tip sites with growth 
probabilities 1.1 x and 4 . 9 ~  IO-* respectively. The full curve represents a site with 
growth probability, 2.6 x The accuracy of the values found for p ,  (CO) is determined 
only by the round-off errors in the calculations. We estimate these errors to be less than 

thus not affecting our numerical results. Note the very small fluctuations in the 
convergence time compared with the large fluctuations in the growth probabilities. 

a plateau. This justifies the use of our growth method at relatively short times, thus 
saving computing time. An example of a cluster grown up to 500 sites by this method 
is shown in figure 1. 

An important measure [8-101 of an aggregate is the set of growth probabilities 
{pi}, where i runs over all perimeter sites of the DLA cluster. This set is calculated 
here more generally as a function of time, i.e. the set of P( r, t ) .  The limit t + 00 of 
P(r ,  t )  represents the stationary set of growth probabilities. In figure 3 we show the 
histogram n ( p ) ,  i.e. the number of growing sites having the growth probabilities 
p = P(r ,  t ) ,  for several time values and for the aggregate shown in figure 1. We see 
that most of the changes occur at very small times and n ( p )  converges quite rapidly. 

This growth method can be easily applied to study different cases of boundary 
conditions. We studied the effect of changing the radius rl and r2 ( r 2 -  rl = 5 was 
chosen constant). Our results for n ( p )  suggest that increasing the outer radius has 
only a negligible effect on n ( p )  and thus on the aggregate structure. We also compared 
the cases of absorbing and reflecting boundary conditions at r = r 2 .  We find that the 
histograms n (  p )  are very similar in both cases, see figure 4. This indicates that growing 
DLA using absorbing or reflecting boundary conditions at r2 have essentially the same 
effect on the cluster structure. 

In summary we have presented a new growth method for DLA-type aggregates. The 
main advantage of the method is that it yields exactly the time-dependent growth 
probabilities in addition to the stationary ( t  + 00) probabilities obtained by other 
techniques [ 113. Our method yields a clear criterion for the time needed to stop the 
diffusion process and to let the growth process occur. We find that the fluctuations in 
the convergence time of pi( t )  are very small when compared with the huge fluctuations 
in their values. 
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Figure 3. Plot of the histogram, n (  p) for several values of times. The dotted line represents 
the short-time data t = 50. The chain line represents t = 300 and the full line I = 1600. It 
is seen that small changes occur between t = 300 and t = 1600, indicating the convergence 
of our method in relatively short timees. 
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Figure4. Comparison of n( p )  for absorbing (dotted line) and reflecting (full line) boundary 
conditions. 
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