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k-core percolation on complex networks: Comparing random, localized, and targeted attacks
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The type of malicious attack inflicting on networks greatly influences their stability under ordinary percolation
in which a node fails when it becomes disconnected from the giant component. Here we study its generalization,
k-core percolation, in which a node fails when it loses connection to a threshold k number of neighbors. We
study and compare analytically and by numerical simulations of k-core percolation the stability of networks under
random attacks (RA), localized attacks (LA) and targeted attacks (TA), respectively. By mapping a network under
LA or TA into an equivalent network under RA, we find that in both single and interdependent networks, TA
exerts the greatest damage to the core structure of a network. We also find that for Erdős-Rényi (ER) networks,
LA and RA exert equal damage to the core structure, whereas for scale-free (SF) networks, LA exerts much more
damage than RA does to the core structure.
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I. INTRODUCTION

In complex networks science, malicious attacks may
crucially change the structure, stability and function of a
network [1–23]. The description of an attack on a network
is often represented by the ordinary percolation model in
which the giant connected component serves as the relevant
order parameter that shows the robustness of a macroscopic
cluster. The behavior of the giant connected component is
characteristic of the structural transition of networks where
nodes suffer random attacks (RA) [2–4,24–28], localized
attacks (LA) [29–31], or targeted attacks (TA) [2,3,32,33].

A natural generalization of ordinary percolation is the k-
core percolation in which the behavior of the k core character-
izes the structural change of a network under RA [34–36]. The
k core of a network is defined as the largest subgraph in which
each node has at least k neighbors and is obtained through
the pruning process in which nodes of degree less than k are
progressively removed. If k = 1, then the k core is simply the
connected component of the network and the giant k core is the
giant connected component, exactly as in ordinary percolation.
If k = 2, then we again have a continuous transition similar to
ordinary percolation, as the 2-core is obtained by simply prun-
ing all dangling branches from the 1-core [34,37]. Under the
k-core percolation with k � 3, single networks demonstrate
discontinuous transitions at a k-dependent critical threshold
pc(k) [34–36]. Although prior research has developed tools for
probing network resilience against RA in the context of k-core
percolation, and has found that degree distribution strongly
influences network stability [34,35], a systematic study of how
TA and LA affect network resilience in the case of k-core
percolation is still missing.

Here we extend the general formalism of the k-core
percolation for uncorrelated networks with arbitrary degree
distributions under RA [34,35] to networks under LA and
TA, respectively. This allows us to obtain the sizes and
other structural characteristics of k cores in a variety of
damaged random networks and to compare the robustness of
the networks under these three types of attack scenarios in
terms of k-core percolation.

We apply our derived general frameworks to study (i)
single ER networks [38,39] with a Poisson distribution, (ii)
single SF networks [8–10] with a power-law distribution,
(iii) two interdependent ER networks with the same Poisson
distribution in each network, and (iv) two interdependent
SF networks with the same power-law distribution in each
network. For each case, we investigate how the type of attack
influences the k-core percolation properties. These include the
size of the k core, Mk(p), as a function of p; the fraction of
unremoved nodes; and the critical threshold pc(k) at which
the k-core Mk(p) first collapses. In all cases, we find that
our extensive simulations and analytical calculations are in
good agreement. In general, TA exerts the biggest destruction
on the k-core structure of networks since the hubs of the
networks—nodes with higher degrees—are more likely to
be removed initially. We observe similar characteristics of
robustness in both single and interdependent ER networks
under both LA and RA. However, for SF networks, LA exerts
considerably more damage than RA does to the core structure.

II. RA, LA, AND TA ON A SINGLE NETWORK

A. Theory

1. Random attack

Following Ref. [40], we introduce the generating function
of the degree distribution P (q) of a random network A as

G0(x) =
∑

q

P (q)xq. (1)

After an initial attack which is manifested by the random
removal of a fraction 1 − p of nodes from the network of size
N , a cascading pruning process occurs as nodes with degree
less than k are progressively disconnected from the network.
We denote the stage right after the random attack as stage
t = 0 and the probability that a given end of an edge is the
root of an infinite (k-1)-ary subtree as f0 [34]. After the first
round of the pruning process which disconnects those nodes
with active degree less than k to the rest of network, we obtain
a network in which a fraction 1 − p of nodes failed due to
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initial attack and some other fraction of nodes have become
isolated due to k-core percolation. Now this network is at stage
t = 1 and at this time f0 decreases to f1. Note that an end of an
edge is a root of an infinite (k-1)-ary subtree if at least k − 1
of its children’s branches are also roots of infinite (k-1)-ary
subrees [34]. This leads to the equation for f1 in terms of f0,
which is

f1 = p

∞∑
q=k−1

P (q + 1)(q + 1)

〈q〉
q∑

j=k−1

Cj
qf

j

0 (1 − f0)q−j

≡ p�(f0), (2)

where C
j
q = q!/(q − j )!j !,p is the probability that the end of

the edge is occupied, P (q + 1)(q + 1)/〈q〉 is the probability
that a randomly chosen edge leads to a node with q out-going
edges (other than the one first chosen), and C

j
qf

j

0 (1 − f0)q−j

is the probability that j out of these q branches are roots of
infinite (k-1)-ary subrees. Note that j here must be at least
equal to k − 1.

Similarly, after the pruning process finishes for the second
time, we would have f2 = p�(f1). More generally, at each
stage t , we have ft obtained from ft−1 through

ft = p�(ft−1), (3)

and the probability that a random node in the damaged network
belongs to the k core is [34]

[Mk(p)]t = p

∞∑
q=k

P (q)
q∑

j=k

Cj
q ft

j (1 − ft )
q−j

≡ p�(ft ). (4)

Note that [Mk(p)]t is also the normalized size of the k core of
the network at this stage. As t → ∞, the network will reach
a steady state and we have ft → f , with f satisfying the
self-consistent equation

f = p�(f ). (5)

Note an equivalent equation for f at the steady state was also
given in Eq. (2) of Ref. [34].

We note that for any given p,f can be solved from Eq. (5)
using Newton’s method with a proper initial value. A trivial
solution f = 0 exists if the occupation probability p is small
and thereafter Mk(p) = 0, i.e., no k core exists in this case.
As p increases and at p = pRA

c (k), a nontrivial solution f =
fc �= 0 first arises and gives birth to a k core. This is typical
first-order phase transition behavior for the network and it
requires the derivatives of both sides of Eq. (5) with respect to
fc be equal [34,35], i.e.,

1 = pRA
c (k)�′(fc). (6)

Therefore, by using Eqs. (5) and (6), the threshold of k-core
percolation pRA

c (k) is determined by

pRA
c (k) = 1/�′(fc), fc = �(fc)/�′(fc). (7)

Here, fc is the value of f at the birth of a k core. When p >

pRA
c (k), there is always a nonzero solution of f that ensures

the existence of a k core.

2. Localized attack

We next consider the localized attack on network A by
the removal of a fraction 1 − p of nodes, starting with a
randomly chosen seed node. Here we remove the seed node and
its nearest neighbors, next-nearest neighbors, and next-next-
nearest neighbors and continue until a fraction 1 − p of nodes
have been removed from the network. This pattern of attack
reflects such real-world localized scenarios as earthquakes or
the results of weapons of mass destruction. As in Ref. [29], the
localized attack occurs in two stages: (i) Nodes belonging to the
attacked area (the seed node and the layers surrounding it) are
removed but the links connecting them to the remaining nodes
of the network are left in place, but then (ii) these links are also
removed. Following the method introduced in Refs. [29,41],
we find the generating function for the degree distribution of
the remaining network to be

Gp0(x) = 1

G0(l)
G0

[
l + G′

0(l)

G′
0(1)

(x − 1)

]
, (8)

where l ≡ G−1
0 (p).

Next we want to find an equivalent network Ã such that
a random removal of a fraction 1 − p of nodes from it
will produce a network with the same degree distribution as
that obtained by a LA on network A described above. We
denote P (q ′) as the degree distribution of network Ã and
G̃A0(x) as its generating function. Following the argument
of equivalence discussed above and by setting G̃A0(1 − p +
px) = G

p

0 (x) [13,31], and after some rearrangement, we have
G̃A0(x) as

G̃A0(x) = 1

G0(l)
G0

[
l + G′

0(l)

G′
0(1)G0(l)

(x − 1)

]
. (9)

Therefore, P (q ′) could be generated from G̃A0(x) through
direct differentiation [13]

P (q ′) = 1

q ′!
dq ′

dxq ′ G̃A0(x). (10)

Combining Eqs. (9) and (10) we obtain the degree distribution
of the equivalent network Ã as

P (q ′) =
∞∑

q=q ′

lq

p
P (q)Cq ′

q

(
p̃

p

)q ′(
1 − p̃

p

)q−q ′

, (11)

with p̃ = G′
0(l)/G′

0(1)l.
Thus performing k-core percolation on the resultant net-

work after LA is equivalent to performing k-core percolation
on network Ã after a random removal of the same fraction
of nodes. This enables us to transform a LA problem into the
familiar RA problem examined in the previous scenario. Then,
for the LA scenario, we replace P (q) in Eqs. (4) and (5) with
P (q ′) obtained from Eq. (11) and obtain the size of k-core
Mk(p) as well as its critical threshold pLA

c (k).

3. Targeted attack

Next, we consider the targeted attack on network A by the
removal of a fraction 1 − p of nodes where nodes are removed
based on their degree [32,33]. This pattern of attack reflects
such real-world cases as intentional attacks on important
transportation hubs or sabotage on the Internet [42]. To analyze
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this case, a value Wα(qi) is assigned to each node, which
represents the probability that a node i with qi links is
initially attacked and becomes dysfunctional. This probability
is described through the family of functions [43]

Wα(qi) = qα
i∑N

i=1 qα
i

, − ∞ < α < +∞. (12)

When α > 0, nodes with higher connectivity have a higher
probability to be removed while α < 0 indicates otherwise.
Note that for α = 0, all nodes have equal probability to be
removed, which is exactly the same as the RA case.

As described in Ref. [32], the targeted attack occurs in two
stages: (i) Nodes are chosen according to Eq. (12) and later
removed but the links connecting the removed nodes and the
remaining nodes are left in place, but then (ii) these links are
also removed.

Following the method introduced in Refs. [32,41], we find
the generating function for the degree distribution of the
remaining network to be (only removing the nodes)

Gb(x) = 1

p

∑
q

P (q)lq
α

xq, (13)

where l = G−1
α (p) and Gα(x) ≡ ∑∞

q=0 P (q)xqα

. The fraction
of the original links that connect to the remaining nodes is p̃ =∑

q P (q)qlq
α

/
∑

q P (q)q. Further removing the links which
end at the removed nodes of a randomly connected network
is equivalent to randomly removing a fraction 1 − p̃ of links
of the remaining nodes. Using the approach introduced in
Ref. [13], we find that the generating function of the remaining
nodes after the removal of the links between removed nodes
and remaining nodes is

Gc(x) = Gb(1 − p̃ + p̃x). (14)

Next we find an equivalent network B̃ in which a random
removal of a fraction 1 − p of nodes will produce a network
with the same degree distribution as that obtained by a TA
on network A described above. We denote P (q ′) as the
degree distribution of network B̃ and G̃B0(x) as its generating
function. Following the equivalence argument discussed above
and setting G̃B0(1 − p + px) = Gc(x) [13], after some alge-
bra, we obtain G̃B0(x) as G̃B0(x) = Gc[1 + 1

p
(x − 1)]. Using

Eq. (14), we thus have

G̃B0(x) = Gb

[
p̃

p
(x − 1) + 1

]
. (15)

Accordingly, combining Eqs. (13) and (15) and using direct
differentiation, we obtain the degree distribution P (q ′) of the
equivalent network B̃ as

P (q ′) =
∞∑

q=q ′

lq
α

p
P (q)Cq ′

q

(
p̃

p

)q ′(
1 − p̃

p

)q−q ′

. (16)

Thus performing k-core percolation on network A after a
TA is the same as performing the k-core percolation on network
B̃ after a random removal of the same fraction of nodes. By
replacing P (q) in Eqs. (4) and (5) with P (q ′) obtained from
Eq. (16), for the TA scenario we can obtain the size of k-core
Mk(p) together with its critical threshold pT A

c (k).
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FIG. 1. Dynamics of an ER network near criticality under random
attack applying k-core percolation. (a) Dynamical process of the
k-core size [Mk(p)]t of the ER network with k = 4, λ = 10, and
N = 106 both in theory (red line with circles) and in simulation
(solid black lines) at p = 0.5145, slightly below pRA

c (k) = 0.515.
(b) Number of iterations (NOI) before network reaching stability.
This number peaks at p = pRA

c and it drops quickly as p moves
away from pRA

c (k) [44,45]. (c) At p = 0.5145, the red line with
circles represents the variation of failure sizes st (only the plateau
stage) for one realization in the simulation; the black dashed line
shows st for the theoretical case. (d) At p = 0.5145, the red line with
rectangles shows the variation of the average branching factor ηt for
one realization in the simulation; the black dashed line shows ηt of
the analytic solution. Note that this figure is similar to that found in
interdependent networks [45].

B. Results

To test the analytical solutions derived in Sec. II A, we
conduct numerical solutions of the analytic expressions and
compare the results with simulation results on single networks
with degrees following both Poisson distributions and power-
law distributions under RA, LA, and TA. All the simulation
results are obtained for networks with N = 106 nodes.

1. Erdős-Rényi networks

We first consider ER networks of which the degree
distribution is Poissonian, i.e., P (q) = e−λ λq

q! , with the average
degree denoted by λ.

In the RA scenario on an ER network with k = 4 and
λ = 10, we exhibit in Fig. 1(a) several realizations the
cascading pruning process under k-core percolation with p

slightly smaller than pRA
c (k), in comparison with theory. Note

that the simulation results for the cascading pruning agree
well with analytical results from Eqs. (3) and (4). Different
realizations give different results due to random fluctuations of
the dynamic processes showing deviations from the mean field,
rendering small fluctuations around the mean-field analytical
result. To calculate the first-order phase transition point pRA

c (k)
with good precision, as shown in Fig. 1(b), we identify the
characteristic behavior of the number of iterations (NOI) in
the cascading process [44]. This gives us pRA

c (k) = 0.515,
corresponding to the peak of the NOI. Figures 1(c) and 1(d)
show the variation of the pruning size st , which is the number
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FIG. 2. Sizes of the k core, Mk(p), as a function of the fraction
of unremoved nodes, p, for a single ER network with λ = 10 and
k = 4. Here solid lines are theoretical predictions, from Eq. (4) for
RA and its counterparts of LA and TA (with α = 1), and symbols are
simulation results with network size N = 106, under RA (©), LA
(�), and TA (
). Note that for ordinary percolation under either RA
or LA, the system is significantly more resilient, and the transition is
continuous at pc = 1/λ = 0.1.

of nodes that are pruned at stage t , and the branching factor
ηt (ηt = st+1/st ), respectively, in one typical realization that
finally reached total collapse. Note that st initially drops as
the network is still well connected and thus fewer nodes
are pruned per pruning step (st > st+1). Then the network
becomes weak enough and st remains at low and almost
constant value during the plateau stage while the network keeps
getting weaker. Finally st rises as a failure in the current step
leads to more than one failure in the next step and results in
the total collapse of the network [see Fig. 1(c)]. Although st

first decreases, the ratio of two consecutive pruning sizes, ηt ,
increases. Specifically ηt increases during the initial cascades
from below 1 to approximately 1 (with some fluctuations)
at the plateau, which starts at time T when each of the sT

pruned nodes leads, on average, to failure of another single
node. This is a stable state, leading to the divergence of
t for N → ∞, where the cascading trees become critical
branching processes [45,46] with the average time at criticality
scales as N1/3 [45]. In a finite network of size N , however,
the accumulated failures weaken the network step by step
and thus st starts to rise, leading to the collapse of the
system. During this period, ηt rises to above 1 as shown in
Fig. 1(d).

When the dynamics end, the network enters the steady state.
At this state, Fig. 2 shows the k-core Mk(p) as a function of
the occupation probability p under RA, LA, and TA (with
α = 1) in the context of k-core percolation. Note that the
simulation results agree well with the theoretical results and
that there is first-order percolation transition behavior in all
attack scenarios. Note also that pRA

c (k) is equal to pLA
c (k) and

they both are smaller than pTA
c (k). This is similar to ordinary

percolation [29,32]. This is the case because, for ER networks
with P (q) = e−λ λq

q! , from Eq. (11) the degree distribution

0 0.2 0.4 0.6 0.8 1
f

0

0.2

0.4

0.6

0.8

1

pΦ
(f

)

p<pc (k)

p=pc (k)

p>pc (k)

RA

RA

RA

FIG. 3. Graphical solution of Eq. (5) for the k-core percolation
with k = 4 in an ER network under RA with an average degree of 10.
The straight line and the curves p�(f ) show, respectively, the left-
and right-hand sides of Eq. (5) as functions of f for different values
of p. The nonzero solution of f appears above the critical value
pRA

c (k) = 0.515, at which the right-hand side curve p�(f ) starts to
intersect the straight line. The physical solution is provided by the
largest root of the equation f = p�(f ) when p > pRA

c (k) (the upper
intersection in the plot).

P (q ′) of the equivalent network Ã can be calculated to be

P (q ′) =
∞∑

q=q ′

lq

p
P (q)Cq ′

q

(
p̃

p

)q ′(
1 − p̃

p

)q−q ′

=
e−λ

[
λl

p̃

p

]q ′

pq ′!

∞∑
q=q ′

[
λl

(
1 − p̃

p

)]q−q ′

(q − q ′)!

=
e−λ

[
λl

p̃

p

]q ′

pq ′!
e
λl(1− p̃

p
)

= e−λ λq ′

q ′!
, (17)

where we use l = ln(p)
λ

+ 1 and p̃ = p/l for simplification.
Note that from Eq. (17) the degree distribution of network
Ã is also Poissonian and has the same average degree λ

as the original network. Thus, we have pRA
c (k) = pLA

c (k) as
observed. Similarly, from Eq. (16) with α = 1, we find the
degree distribution P (q ′) of the equivalent network B̃ to be

P (q ′) = e−λl2 (λl2)q
′

q ′!
, (18)

with l = ln(p)
λ

+ 1. Note that from Eq. (18) the degree distribu-
tion of network B̃ is also Poissonian but has a smaller average
degree λl2 as l is always smaller than 1 [32]. Compared to that
under RA, the removal of the same fraction of nodes under
TA reduces a larger amount of connectivity in the network
and therefore, in the context of k-core percolation, the critical
threshold pTA

c (k) is significantly larger than pRA
c (k).

As an example, Fig. 3 shows the solution of Eq. (5) for
different values of the occupation probability p under RA and
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FIG. 4. Percolation thresholds pc(k) of a single ER network as a
function of k under RA, LA, and TA with α = 1, λ = 10. Here solid
lines are theoretical predictions and symbols (© for RA, � for LA, 

for TA with α = 1.0, and � are for TA with α = 2.0) are simulation
results with network size of N = 106 nodes. Note that LA coincides
with RA.

demonstrates the origin of the first-order transition. When p <

pRA
c (k), the straight line and the curve only have an intersection

at f = 0, which always renders Mk(p) = 0 according to
Eq. (4). A k-core Mk(p) first arises discontinuously at p =
pRA

c (k), when the straight line and the curve tangentially touch
each other at a nonzero intersection at f = fc, satisfying
Eq. (6). As p increases further and becomes greater than
pRA

c (k), Mk(p) continues to exist as an additional intersection
appears, and this serves as the physical solution of f (see the
upper intersection in Fig. 3). Similar procedures are applied to
the LA and TA scenarios as well and the corresponding pLA

c (k)
and pTA

c (k) are obtained, respectively.
Next we obtain the relationship between the robustness of

the network under the three types of attacks and the threshold
k in the context of k-core percolation. Figure 4 shows how the
percolation thresholds pc(k) under RA, LA, and TA, change
with k where λ = 10 for a single ER network. Here in Fig. 4, as
k increases from 3 to 7, pRA

c (k), pLA
c (k), and pTA

c (k) increase
accordingly. For each k value, pRA

c (k) = pLA
c (k) < pTA

c (k,α =
1.0) < pTA

c (k,α = 2.0), which indicates that in the context of
k-core percolation RA and LA cause the same amount of
damage to the structure of an ER network but that TA causes
more severe structural damage to an ER network. Moreover,
we find that RA and LA have very similar dynamic properties
in terms of NOI as well as the pruning size st . Figure 4 also
indicates that, with a larger α, TA will cause more damage since
higher-degree nodes are more likely to be removed. Similar
results are reported in the context of ordinary percolation on
ER networks [29,32].

2. Single scale-free networks

We next consider SF networks in which degrees of nodes
follow a power-law distribution, i.e., P (q) ∝ q−γ with the
degree exponent γ ∈ (2,3]. As in Ref. [34], a size-dependent
cutoff qcut(N ) of the degree distribution is introduced. For

0 0.2 0.4 0.6 0.8 1p
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10-1

M
k(p

)

RA
LA
TA
Theory

FIG. 5. Sizes of the k core, Mk(p), as a function of the fraction
of unremoved nodes, p, for a single SF network with γ = 2.3,
qmin = 2, qcut(N ) = 1000, and k = 4. Here solid lines are theoretical
predictions, from Eq. (4) for RA and its counterparts of LA and TA
(with α = 1), and symbols are simulation results with network size
N = 106, under RA (©), LA (�), and TA (
).

the configuration model without multiple connections the
dependence qcut(N ) ∼ √

N is usually used when 2 < γ � 3,
and first-order percolation transition behavior was observed
in the RA case [34]. Figure 5 shows Mk(p) as a function of
the occupation probability p under RA, LA, and TA (with
α = 1) under k-core percolation with k = 4 and γ = 2.3. The
simulation results agree well with the theoretical results, and
there is first-order percolation transition behavior in all attack
scenarios. Note that pLA

c (k) is approximately equal to pTA
c (k)

and that they both are significantly larger than pRA
c (k). Because

SF networks are ultrasmall [10,47], the LA process can easily
spread from the seed node to high-degree hubs in several
steps and therefore severely disrupt the core structure of the
network, an outcome similar to that of the TA process. This
is in marked contrast to the case of ER networks in which
the majority of nodes have degrees around the average degree
and therefore, for the RA and LA processes, nodes of high
degrees are less likely to be reached than those in the TA
process.

Next we determine the relationship between the robustness
of the network under three types of attacks and the threshold k

in the context of k-core percolation. For a single SF network,
Fig. 6 shows how the percolation thresholds pc(k) under RA,
LA, and TA (with α = 1) change with k for two values of γ .
As seen in Fig. 6, the pc(k) values under all attack scenarios for
γ = 2.3 are smaller than those for γ = 2.6, which indicates
that SF networks with smaller γ values are more stable in the
context of k-core percolation. In addition, for each value of γ as
k increases from 3 to 7, pRA

c (k), pLA
c (k), and pTA

c (k) increase
accordingly. For each k value, pLA

c (k) ≈ pTA
c (k) > pRA

c (k),
which indicates that in the context of k-core percolation, LA
and TA (with α = 1) exert approximately the same amount of
damage to the structure of a SF network, whereas RA produces
less severe structural damage to a SF network. Analogous
results are reported in the context of ordinary percolation on
SF networks [29,32].
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FIG. 6. Percolation thresholds pc(k) of a single SF network as a
function of k under RA, LA, and TA with α = 1, qmin = 2, qcut(N ) =
1000 for γ = 2.3 (solid red lines) and γ = 2.6 (dashed purple lines).
Here lines are theoretical predictions and symbols (© for RA, � for
LA, and 
 are for TA) are simulation results with network size of
N = 106 nodes.

III. RA, LA, AND TA ON INTERDEPENDENT NETWORKS

A. Theory

We extend the formalism of ordinary percolation on fully
interdependent networks introduced in Ref. [24] to k-core
percolation. Specifically, we consider two networks, A and
B, with the same number of nodes N . Within each network
the nodes are randomly connected with the same degree
distribution P (q). A fraction dA of nodes from network A

depends on nodes in network B, and a fraction dB of nodes
from network B depends on nodes in network A. We also
assume that if a node i in network A depends on a node
j in network B and node j depends on node l in network
A, then l = i, which rules out the feedback condition [48].
This interdependence means that if node i in network A fails,
its dependent node j in network B will also fail and vice
versa.

1. Random attack

We begin by randomly removing a fraction 1 − p of nodes
in network A. All the nodes in network B that are dependent
on the removed nodes in network A are also removed.
Then a cascading pruning process begins, and nodes with
degree less than k1 in network A and k2 in network B are
sequentially removed in the k-core percolation process. Due
to interdependence, the removal process iterates back and forth
between the two networks until they fragment completely
or produce a mutually connected k core with no further
disintegration, where k ≡ (k1,k2) [24,36].

When the system of interdependent networks stops disinte-
grating, as in a single network, we let fA(fB) be the probability
that a given end of an edge of network A(B) is the root of an
infinite (k1(2)-1)-ary subtree. An end of an edge is a root of an
infinite (k1-1)-ary subtree of network A if it is an autonomous
node [49] and at least k1 − 1 of its children’s branches are also

roots of infinite (k1-1)-ary subrees; otherwise, despite that, the
node it depends on has to be in the k2 core of network B.
Similar arguments exist for edges in network B. These lead to
the equation of fA in terms of fA and fB as

fA = p�A(fA)(1 − dA) + p�A(fA)�B(fB)dA

= p�A(fA)[(1 − dA) + dA�B(fB)], (19)

where p is the probability that an end n0 of an edge is occupied,
�A(fA) is the probability that n0 is a root of an infinite (k1-1)-
ary subtree, 1 − dA is the probability that n0 is an autonomous
node, dA is the probability that n0 depends on a node n′ in
network B, and �B(fB) is the probability that n′ is in the k2

core of network B. Following similar arguments, we obtain
the equation of fB in terms of fA and fB ,

fB = �B(fB)[(1 − dB) + dBp�A(fA)]. (20)

Note that for any given value of p, fA and fB can be solved
from Eqs. (19) and (20) using Newton’s method after choosing
appropriate initial values. We denote MA

k (p) and MB
k (p) as the

probability that a randomly chosen node in network A and B

belongs to the mutually connected k core, respectively, and
they satisfy

MA
k (p) = p�A(fA)[1 − dA + dA�B(fB)],

MB
k (p) = �B(fB)[1 − dB + dBp�A(fA)]. (21)

Note that the mutually connected k core is made up of the
k1 core in network A [with its normalized size denoted by
MA

k (p)] and the k2 core in network B [with its normalized size
denoted by MB

k (p)].
The trivial solution fA = fB = 0 for low occupation

probability p signifies the absence of a k core in the system.
As p increases, a nontrivial solution emerges in the critical
case [p = pRA

c (k)] in which two curves fA = fA(fB) and
fB = fB(fA) tangentially touch each other, i.e.,

dfA

dfB

· dfB

dfA

= 1, (22)

which, together with Eqs. (19) and (20), gives the solution
for pRA

c (k) and the critical size of the mutually connected k-
ore. When p > pRA

c (k), these two curves will always have a
nonzero intersection that constitutes a physical solution. For
simplicity and without loss of generality, we use dA = dB ≡ d

throughout the rest of this paper.

2. Localized attack

When LA is performed on the system of interdependent
networks A and B described above, we find an equivalent
random network E with a degree distribution P (q ′) [from
Eq. (11)] such that after a random attack in which a fraction
1 − p of nodes in network E are removed, the degree
distribution of the remaining network is the same as the
degree distribution of the remaining network resulting from
an LA on network A. Then, by mapping the LA problem
on interdependent networks A and B to a RA problem on a
transformed pair of interdependent networks E and B, we can
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FIG. 7. Sizes of k core of network A,MA
k (p), as a function of the

fraction of unremoved nodes, p, for two partially interdependent ER
networks with d = 0.5, λ = 10, and k = (3,4). Here solid red lines
are theoretical predictions, from Eq. (21) for RA and its counterparts
of LA and TA for α = 1, and symbols are simulation results with
network size N = 106, under RA (©), LA (�), and TA (
).

apply the mechanism of RA on interdependent networks to
solve pLA

c (k) and the mutually connected k core under LA.

3. Targeted attack

Analogously, when TA is performed on the interdependent
networks A and B described above, we find an equivalent
random network F with a degree distribution P (q ′) [from
Eq. (16)] such that after a random attack in which a fraction
1 − p of nodes in network F are removed, the degree
distribution of the remaining network is the same as the
degree distribution of the remaining network resulting from
an TA on network A. Thus, by mapping the TA problem
on interdependent networks A and B to a RA problem on
a transformed pair of interdependent networks F and B, we
can apply the mechanism of RA on interdependent networks
to solve pTA

c (k) and the mutually connected k core under TA
in the case of k-core percolation.

B. Results

1. Two interdependent Erdős-Rényi networks

We start with two partially interdependent networks in
which the degrees both follow the same Poisson distribution
and exert a RA on network A, initiating a k-core percolation
pruning process that continues until equilibrium is reached.
We then follow the same procedure with the same setup
but this time using a LA and TA to initiate the pruning
process. Figure 7 shows the k-core MA

k (p) of network A as
a function of the occupation probability p under RA, LA,
and TA (with α = 1) in the context of k-core percolation
with d = 0.5,k = (3,4), and λ = 10. The simulation results
agree well with the theoretical results, and there are first-order
percolation transitions in all attack scenarios. As in single ER
networks, note that pRA

c (k) is equal to pLA
c (k) and both are

smaller than pTA
c (k).

0 0.2 0.4 0.6 0.8 1
fB

0

0.2

0.4

0.6

0.8

1

f A

fA=fA(fB)

fB=fB(fA)

FIG. 8. Graphical solution of Eqs. (19) and Eq. (20) for the k-
core percolation with k = (3,4) and d = 0.5 in two interdependent
ER networks A and B with the average degree 10, where network
A is damaged initially under RA. The blue and red curves show,
respectively, Eq. (19) and Eq. (20) for the value of p = pRA

c (k).
The nontrivial solution of fA and fB appears at the critical value
pRA

c (k) = 0.391, at which the two curves intersect tangentially with
each other, satisfying Eq. (22). When p > pRA

c (k), these two curves
will always have a nonzero intersection and it serves as the physical
solution.

Figure 8 shows, for instance, the critical solution of
Eqs. (19) and (20) for the case of RA shown in Fig. 7. When
p < pRA

c (k), the two curves representing Eqs. (19) and (20)
correspondingly intersect only at the origin, and this always
renders a zero-sized k-core MA

k (p) according to Eq. (21). A k-
core MA

k (p) first arises discontinuously at p = pRA
c (k), when

these two curves tangentially touch each other at a nonzero
intersection at (fAc,fBc), satisfying Eq. (22). As p increases
further above pRA

c (k), MA
k (p) continues to exist because of the

presence of a nonzero intersection that serves as the nontrivial
solution of Eqs. (19) and (20). Similar procedures are applied
to the LA and TA scenarios as well and the corresponding
pLA

c (k) and pTA
c (k) are obtained, respectively.

Next we obtain the relationship between the robustness of
the network system, i.e., the threshold pc(k), under three types
of attacks and the interdependence strength d in the context
of k-core percolation. Figure 9 shows how the percolation
thresholds pc(k) under RA, LA, and TA (with α = 1) change
with d where k = (3,4) and λ = 10 for two ER networks. As
seen in Fig. 9, when d increases from 0 to 1, pRA

c (k), pLA
c (k),

and pT A
c (k) increase accordingly, which means that the higher

the level of interdependence between networks A and B,
the less resilient they are against attacks. Note that d = 0
corresponds to the case in which there is no interdependence
between networks A and B and the thresholds pc(k) reduce to
those shown in Fig. 4 at k = 3. For each d value, pRA

c (k) =
pLA

c (k) < pTA
c (k), which indicates that in the context of k-core

percolation, RA and LA exert the same level of damage to
the structure of an ER network but that TA produces more
severe damage to an ER network. Similar results are reported
in the context of ordinary percolation on interdependent ER
networks [31,32].
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FIG. 9. Percolation thresholds pc(k) of two interdependent ER
networks as a function of interdependence strength d under RA, LA,
and TA with λ = 10 and k = (3,4). Here solid lines are theoretical
predictions and symbols (© for RA, � for LA, and 
 are for TA) are
simulation results with network size of N = 106 nodes. Note that for
d = 0 the results reduce to the case of single networks with k = 3,
shown in Fig. 4.

2. Two interdependent scale-free networks

We construct two interdependent networks in which the
degrees in each follow the same power-law distribution.
Figure 10 shows the k-core MA

k (p) of network A as a function
of the occupation probability p under RA, LA, and TA (with
α = 1) under k-core percolation with k = (3,4) and γ = 2.3.
The simulation results agree well with the theoretical results,
and there is first-order percolation transition behavior in all
attack scenarios. Note that pLA

c (k) is approximately equal to
pTA

c (k) and they both are significantly larger than pRA
c (k). As

0 0.2 0.4 0.6 0.8 1p
10-6

10-5

10-4
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10-2

10-1

M
k(p

)

RA
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TA
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A

FIG. 10. Sizes of the k core of network A, MA
k (p), as a function of

the fraction of unremoved nodes, p, for two partially interdependent
SF networks with d = 0.5, γ = 2.3, qmin = 2, qcut(N ) = 1000, and
k = (3,4). Here solid lines are theoretical predictions from Eq. (21)
for RA and its counterparts of LA and TA for α = 1, and symbols are
simulation results with network size N = 106, under RA (©), LA
(�), and TA (
).
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FIG. 11. Percolation thresholds pc(k) of two interdependent SF
networks as a function of interdependence strength d under RA,
LA, and TA with α = 1, qmin = 2, qcut(N ) = 1000, γ = 2.3, and
k = (3,4). Here solid lines are theoretical predictions and symbols
(© for RA, � for LA, and 
 are for TA) are simulation results with
network size of N = 106 nodes. Note that for d = 0 the results reduce
to the case of single networks with k = 3, seen in Fig. 6.

in single-SF networks, the LA process can easily spread from
the seed node to high-degree hubs in few steps and therefore
greatly disintegrates the core structure of the network, similarly
to the TA process. This is in strong contrast to the case of
ER networks in which most nodes have degrees close to the
average degree and therefore for the RA and LA processes,
nodes of high degrees are less likely to be removed compared
to the TA process.

Next we compare the robustness of the network system
under each of the three types of attacks as a function of
the interdependence strength d in the context of k-core
percolation. Figure 11 shows how the percolation thresholds
pc(k) under RA, LA, and TA (with α = 1) change with d

where k = (3,4) and γ = 2.3 for two SF networks. Here
in Fig. 11, as d increases from 0 to 1, pRA

c (k), pLA
c (k),

and pTA
c (k) increase accordingly, which means that the more

interdependent networks A ad B are on each other, the less
resilient they will be against attacks. Note that the d = 0 case
corresponds to the scenario shown in Fig. 6 at k = 3. For each
d value, pLA

c (k) ≈ pTA
c (k) > pRA

c (k), which indicates that in
the context of k-core percolation LA and TA (with α = 1)
exert approximately the same level of damage to the structure
of a SF network, whereas RA produces less severe damage
to a SF network. Similar results are reported in the context of
ordinary percolation on SF networks [29,32].

IV. CONCLUSIONS

We have studied and compared the robustness of both single
and interdependent networks under three types of attacks in the
context of k-core percolation. We show that interdependence
between networks makes the system more vulnerable than their
single-network counterparts. In addition, we map a network
under LA and TA into an equivalent network under RA, solve
analytically the k-core percolation problem, and show how
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the initial attack type affects the robustness of networks. In
general, TA exerts the most damage. In particular, LA and RA
cause equal damage to ER networks, whereas in ultrasmall
networks, like SF networks, LA causes much more damage
than does RA. These findings hold for both single networks
and interdependent networks.
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