
VOLUME 81, NUMBER 3 P H Y S I C A L R E V I E W L E T T E R S 20 JULY 1998

Indication of a Universal Persistence Law Governing Atmospheric Variability
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We study the temporal correlations in the atmospheric variability by 14 meteorological stations
around the globe, the variations of the daily maximum temperatures from their average values. We
apply several methods that can systematically overcome possible nonstationarities in the data. We find
that the persistence, characterized by the correlation C(s) of temperature variations separated by s days,
approximately decays C�s� � s2g , with roughly the same exponent g � 0.7 for all stations considered.
The range of this universal persistence law seems to exceed one decade, and is possibly even larger
than the range of the temperature series considered. [S0031-9007(98)06602-2]

PACS numbers: 92.60.Wc, 02.70.Hm, 64.60.Ak, 92.60.Bh

The persistence of the weather is a well known phe-
nomenon. If, for example, one day is sunny and warm,
there is a high tendency that the next day remains similar.
Persistence has been found also in successive years and is
indicated by the finding of “red” noise in the power spectra
of long-time meteorological records, but the specific law
and the range of the persistence have not been clari-
fied [1–3]. Here we study long-time daily temperature
records (typically 100 years) obtained from 14 (randomly
chosen) meteorological stations in Europe, North America,
and Australia, from various climatological zones.
To eliminate the (trivial) periodic seasonal trends, we ana-
lyzed the variations of the daily maximum temperatures
from their average values. To eliminate further trends in
the data, arising, e.g., as a result of urban warming, we
applied, for the first time, detrended fluctuation analysis
(DFA) [4] and wavelet techniques [5] that can systemati-
cally overcome possible nonstationarities in the data. Our
analysis suggests that (i) the persistence, characterized by
the correlation C(s) of temperature variations separated by
s days, follows a power law, C�s� � s2g , with roughly
the same exponent g � 0.7 for all stations considered,
and that (ii) the range of this universal persistence law
exceeds one decade. We cannot exclude the possibility
that it even exceeds the range of the temperature series
considered.

We have studied the records of the maximum daily tem-
peratures Ti of the following weather stations (the length
of the records is written within the parentheses): Albany
(90 yr), Brookings (99 yr), Huron (55 yr), Luling (90 yr),
Melbourne (136 yr), New York City (116 yr), Pendle-
ton (57 yr), Prague (218 yr), Sidney (117 yr), Spokane
(102 yr), Tucson (97 yr), Vancouver (93 yr), Moscow
(115 yr), and St. Petersburg (111 yr). We are interested in
the temperature fluctuations around their periodic seasonal
trend. Therefore, we first determine the mean maximum

daily temperature �Td� for each calendar date d, say 1 May,
by averaging over all years in the time series, and then we
analyze the corresponding temperature deviations DTi �
Ti 2 �Td� from these mean values.

Qualitatively, persistence shows up already in plots of
DTi as shown in Fig. 1(a) for two successive years in
Prague. The persistence is represented by relatively large
patches of positive and negative DTi . Indeed, when the
data are randomly shuffled, the large patches disappear, as
seen in Fig. 1(d). Quantitatively, persistence in the DTi

can be characterized by the (auto)correlation function,

C�s� � �DTiDTi1s� �
1

N 2 s

N2sX

i�1

DTiDTi1s . (1)

If there is no persistence, the DTi are uncorrelated and
C(s) is zero for s positive. If persistence exists up to a
certain number of days sp , the correlation function will be
positive up to sp and vanish above sp . A direct calculation
of C(s) is hindered by the level of noise present in the
finite temperature series, and by possible nonstationarities
in the data (see, e.g., [6]). To reduce the noise we do not
calculate C(s) directly, but instead study the temperature
“profile” [Fig. 1(b)]

Yn �
nX

i�1

DTi . (2)

We can consider the profile Yn as the position of a
random walker on a linear chain after n steps. The random
walker starts at the origin of the chain and performs, in
the ith step, a jump of length DTi to the right, if DTi is
positive, and to the left, if DTi is negative. According
to random walk theory (see, e.g., [7]), the fluctuations
(standard deviation, see below) F(s) of the profile in a given
“time window” of length s are related to the correlation
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FIG. 1. (a) Daily temperature variations DTi � Ti 2 �Td�
from 1 January 1900 until 31 December 1901 in Prague.
(b) The temperature profile Yn �

Pn
i�1 DTi for Prague, for

the entire 218 yr (1775–1992). (c) The fluctuation function
F(s) obtained (i) from the standard fluctuation analysis (FA)
(circles), (ii) from the detrended fluctuation analysis (DFA)
(squares), (iii) from the first derivative wavelet method (WL1)
(triangles), and (iv) from the second (diamonds) and third
(stars) derivative wavelet method (WL2, WL3). In the log-
log plot, the curves obtained by the detrended methods (DFA,
WL2, and WL3) appear to be approximate straight lines for
s above 10 days, and their slope a � 0.65 (shown as straight
line in the figure) is related to the correlation exponent g by
g � 2 2 2a, yielding g � 0.7. (d)–(f ) The analog curves
to (a)–(c), respectively, when the DTi are randomly shuffled.
In this case, due to the shuffling, the correlations have been
removed, and the fluctuation function F(s) is proportional to
s1	2, as indicated by the straight line with slope 1	2 in (f ).

function C(s). For the relevant case of long-range power-
law correlations

C�s� � s2g , 0 , g , 1 , (3)

the fluctuations F(s) increase by a power law [7],

F�s� � sa , a � 1 2 g	2 . (4)

For uncorrelated data [as well as for short-range correla-
tions represented by exponentials C�s� ~ exp�2s	sp� or
g $ 1], we have a � 1	2.

To find how the fluctuations scale with s, we divide
the profile into nonoverlapping segments of size s. We
calculate the square fluctuations F2

n�s� in each segment n
and obtain F(s) by averaging over all segments, F�s� �
�F2

n�s��1	2 [8]. We employed four methods that differ
in the way the fluctuations are measured and possible
nonstationarities are eliminated:

(i) In the (standard) fluctuation analysis (FA), we con-
sider the profile at both ends of each segment n, Y�n11�s
and Yns, and identify the square of the fluctuations in this
segment as F2

n�s� � �Y�n11�s 2 Yns�2.
(ii) In the “detrended” fluctuation analysis, we deter-

mine in each segment the best linear fit of the profile,
and calculate the standard deviation of the profile from
this straight line. This way, we eliminate the influence
of possible linear trends on scales larger than the seg-
ment [4].

More advanced techniques are wavelet methods [5],
which are based on the determination of the mean values
Yn�s� of the profile in each segment n and the calculation
of the fluctuations between neighboring segments.

(iii) In the first-order wavelet method (WL1), we deter-
mine F2

n�s� � 
Yn�s� 2 Yn11�s��2.
(iv) In the higher-order wavelet methods (WL2 and

WL3), we determine F2
n�s� � 
Yn�s� 2 2Yn11�s� 1

Yn12�s��2 and F2
n�s� � 
Yn�s� 2 3Yn11�s� 1 3Yn12�s�

2 Yn13�s��2.
Methods (iii) and (iv) are called wavelet methods, since

they can be interpreted as transforming the profile by
square wavelets representing first-, second-, and third-
order cumulative derivatives of the profile.

By construction, FA and WL1 are sensitive to linear
trends, while DFA and WL2 can eliminate them. WL3
can, in addition, eliminate also parabolic types of trends.
These methods are superior to the conventional power
spectra methods (see, e.g., [9]), where Fourier transforms
S�f� of annual temperature correlations are considered.
A typical power spectrum consists of various oscillatory
maxima and nonconstant background noise (“red noise”),
which arises from (correlated) temperature fluctuations.
Power-law correlations [see Eq. (3)] will lead to a cor-
responding power-law decay of S�f�, S�f� � f2�12g�,
which is, however, in our case hidden by the additional
oscillatory maxima and therefore cannot be detected un-
ambiguously. The methods we use here are more efficient
for detecting long-term persistence laws, do not involve
fit parameters, and have already been applied successfully
to biological sequences (heart beat intervals and DNA se-
quences [4,5]) where nonstationarities are known to occur.

We begin the analysis with the temperature series �DTi

for Prague which is the longest series (218 yr) in this
study. Figure 1(b) shows the profile, and Fig. 1(c) shows
the fluctuation functions F�s� obtained from the four
methods. In the log-log plot, all curves are approximately
straight lines for s above 10 days, with a slope a �
0.65. This result suggests that there exists long-range
persistence expressed by the power-law decay of the
correlation function with an exponent g � 0.7. A closer
look at the curves in Fig. 1(c) indicates that the effects
of trends and correlations can, to a certain extent, be
distinguished by the methods. At about 103 days, the
curves of FA and WL1 show a slight crossover toward
a larger exponent a. This behavior can be interpreted
as the effect of the warming of Prague due to urban
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development. In contrast, DFA, WL2, and WL3 yield
approximate straight lines until about 104 days above
which the data start to scatter. The systematic crossover
at about 103 days does not occur here, since DFA, WL2,
and WL3 eliminate the (roughly) linear trend of warming.

To test our claim that the slope a � 0.65 is due to long-
range correlations, we have eliminated the correlations by
randomly shuffling the DTi . This shuffling has no effect
on the probability distribution function of the DTi , which
we found to be approximately Gaussian. Figures 1(d)–
1(f) show the effect of shuffling on (d) the daily tempera-
ture fluctuations DTi , (e) the profile, and (f) the fluctuation
functions. By comparing Figs. 1(a)–1(c) with 1(d)–1(f),
we see the effect of correlations: The uncorrelated DTi are
less patchy, the uncorrelated profile shows much smaller
deviations from the (fixed) values at the end points, and the
exponent a characterizing the fluctuations in the shuffled
uncorrelated sequence is 1	2, as expected. For a further
confirmation of our findings, we have also tested F�s� for
short-range correlations by dividing the temperature record
into segments of 50 days and shuffling the segments. We
obtained that F�s� crosses over to s1	2 above s � 50, in
agreement with the expectation.

Further representative examples are shown in
Figs. 2(a)–2(e), where we plotted the fluctuation functions
for New York City (116 yr), Luling from Texas (90 yr),
Spokane from Washington State (102 yr), Melbourne
(136 yr), and Sydney (117 yr). The straight lines shown
in the double-logarithmic plots have slope 0.65. Similar
to Prague, the effect of local warming is also seen in New
York and Sydney. For Spokane, the FA and WL1 curves
also seem to exhibit a slight crossover, while for Luling
and Melbourne the curves are straight lines without any
crossover. Our main point is that the detrended methods
(DFA, WL2, and WL3) yield, for all stations considered,
approximate straight lines with roughly the same slope
around 0.65. Because of lack of statistics, the data scatter
strongly for large s (above 10 yr), and the actual range of
the correlations cannot be detected.

To test the methods further and to see which range
of correlation can be detected from the data, we have
also analyzed artificial sequences of similar length as the
sequences in (a)–(e), with the correlation exponent 0.65.
A representative result is shown in Fig. 2(f). Apart from
very small s values, the artificial curves look similar as
the realistic detrended ones. Above an s value that is
about 10% of the length N of the artificial series, the data
start to scatter and the true range of correlations cannot
be detected. Hence, from our analysis of the real data we
cannot exclude the possibility that the time range of the
persistence law found here may even exceed the length of
the presently available temperature series.

Our finding of long-range power-law persistence with
roughly the same exponent a for different weather stations
in different climatic zones and in different time regimes
(self-similarity from weeks to decades of years) suggests
that atmospheric variability is governed by rather funda-

FIG. 2. The fluctuation functions F�s� versus s obtained from
FA, DFA, WL1, WL2, and WL3, in a double logarithmic plot,
for five representative weather stations (a)–(e) and (f ) one
sequence of 40 000 artificial random data with a correlation
exponent g � 0.7. For the different analysis methods, we used
the same symbols as in Figs. 1(c), 1(f). For s . 10, the curves
obtained by the detrended methods (DFA, WL2, and WL3)
appear to be approximate straight lines, with slopes around
a � 0.65 (shown as straight lines in the figures), yielding the
correlation exponent g � 0.7.

mental mechanisms, leading to temperature fluctuations
similar in different places and on different time scales. The
extremely long persistence of the fluctuations suggests that
the coupling of atmospheric and oceanic processes has to
be involved, as the latter rule the long-term dynamics of
the system. The importance of this coupling has been em-
phasized in the context of interdecadal and century-scale
climate oscillations [10], and is currently one of the core
questions in climatology [11].

Moreover, our findings may be relevant to the current
debate over anthropogenic global warming [12]. While
most climatologists hold that there is already empirical
evidence for human interference with the climate, a few
others strongly disagree [13]. Given the operable bulk
of meteorological observations, the crucial point is to
distinguish the “authropogenic signal” from the “noise”
generated by the natural variability of the geophysical
system. Climatologists try to circumvent this problem,
e.g., by complementing empirical data with simulated
ones obtained from coupled ocean-atmosphere circulation
models (see, e.g., [14]). The results of the various models
are partially conflicting (see, e.g., [15]), and we believe
that the universal power-law relation we found can serve
as a very useful test [16] for the competing climate models
and of the basic assumptions underlying them.
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