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We study a system in which diffusing particles (species A) are injected into a reactive d-dimensional
substrate (species B) at rate A, with the rule that A+B— C(inert). The amount of species C, C(t),
and the number of surviving A particles, A(t), are calculated for substrate dimensions d = 1, 2, and
3. We find the surprising results A(t) ~ t%3 for d = 3 and C(t) ~ VtInt for d = 1. We confirm
our predictions by performing Monte Carlo simulations for d = 1, 2, and 3 and experiments for the

reaction Iz(gas) + 2A8(so1ia)y — 2A8I(so1q) for d = 2.

PACS numbers: 64.60.—i

What governs the growth dynamics of the disk-shaped
structures one often sees after a salt crystal is dropped
on an icy pavement? There are countless systems in
nature in which a reactant A is “injected” into a d-
dimensional substrate B whereupon it reacts to form
some inert product C. Examples range from corrosive
processes [1] to exciton trapping [2, 3] and defect anneal-
ing [4]. Other systems in which this process occurs are
solid state chemical reactions, such as the oxidation of
silicon [Og(gas) + Sisolid) — SiO2(solig)] in the processing
of semiconductors [5]. A concrete d = 2 example is the
following experiment: inject iodine at a point of a large
silver plate and monitor the reaction Ip(gas) +2Ag(s01ia) —
2Aglso1iq)- In general, such systems are described by the
rule A(diffusing) + B(substrate) — C(inert).

Here we report a theoretical, numerical, and experi-
mental study of a general model in which A particles are
continuously injected at a rate of A particles per unit time
at a single point. Each A particle performs an indepen-
dent random walk (we ignore excluded volume effects) on
a d-dimensional Euclidean lattice, and the B particles are
fixed at every site of the lattice. Upon contact, an A and
a B undergo an irreversible reaction (instantaneously)
to form an inert and immobile compound C. Thus the
A particles can actually “diffuse” only in the region of
the lattice that has been “cleared” of B particles by the
reactions of other A particles. In general, this model de-
scribes any process which depends on first passage events
of diffusing particles in which both the substrate and the
diffusing particles are “spent” upon reaction (in distinc-
tion to “trapping” models in which certain sites on the
substrate act as eternal reacting sites [6]).

We present results for the amount of the compound C
present in the system at time ¢, C(¢t); and for A(t), the
number of A particles that have “survived” (that have
not yet reacted) up to time t; for substrate dimensions

d =1,2,3. The quantities A(t) and C(t) are related by
A(t) = Xt — C(¢). (1)

We find that C(t) and A(¢) have complex growth be-
haviors with various distinct growth regimes. The initial
growth regime is due to the discreteness of the lattice,
in this regime C(t) ~ t%, which is apparent when X is
large. This behavior lasts as long as the inverse of the
probability to find an A particle near the boundary of the
reacted area is much smaller than the injection rate A.
Thus this regime ends at a crossover time given roughly
by tx ~ In for very large values of A [7].

The long time behavior can be analyzed using the con-
tinuum version of the problem, which yields a Stefan
problem [5, 8],

38%4 = DVZcy, (2)
with the conditions (i) lime—o[~D [y Vea-ds] = A, (ii)
ca(r = R(t),t) =0, and (iii) R = —Ddca/0r|,—g. Here
ca(r,t) denotes the concentration of A particles at a dis-
tance r from the origin at time ¢, D is their diffusion
coefficient, and R(t) is the radius of the region where re-
actions have occurred. Condition (i) specifies that there
is a constant input at the origin, and s(e) is defined as
the surface of the d-dimensional sphere of radius € around
the origin. Condition (ii) is the trapping condition at the
boundary between the reacted (reached by an A particle)
and nonreacted (nonreached) regions [9]. Condition (iii)
specifies the motion of the boundary; it is obtained by
equating the number of C particles that are created at a
given time with the number of A particles that react at
that time [10].

By defining y = r/R we convert Eq. (2) into a fixed
boundary problem in the variable y. Assuming that
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ca(y,t) approaches its stationary state (an assumption
which can be verified for the case d = 2 by the exact
solution presented below), we set dca(y,t)/0t = 0. The
resulting equation can be solved by integration, subject
to the conditions (i) and (ii),

.\ d/2-1
A RE
calv:t) = spaara—z \ 3D

d .RR d RR
x {r <1—§,y2—2D> ~F<1—§,——2Dﬂ :
(3)

Here I'(a, z) is the incomplete gamma function and §2
is defined through the relation

Ct)=Qd)RY  [Q=2,m31/4;d=1,2,3]. (4)
From Eq. (3) and condition (iii), we obtain the relation

. A —-RR/2D
R= TORI-1¢ /2D, (5)

For d # 2, we note directly from Eq. (5) that C(¢) must
obey the scaling expression

C(t) ~ AV @D g (/X242 (6)

For a more detailed analysis of the long time behavior of
C(t) we treat each dimension separately. We first con-
sider the long time behavior for d = 1 and 3; and then
obtain the exact solution for d = 2.

d = 1. For d = 1, WeexpectR»»Oast—»oo.
Therefore, according to Eq. (5), RR must diverge in time,
which implies that R/t'/? — co. However, R is asymp-
totically bounded by a function of the form (¢ In¢)*/2 [11].
Thus, we argue that R has the asymptotic form

R(t) ~ [4Dat In(t/to)]/2. (7)

Substituting Eq. (7) into Eq. (5) and equating the leading

FIG. 1. (a) Scaling plot of A2C?(t) as a function of
A%tIn(\?t) for the case d = 1 for several values of the in-
jection rate A\: A = 1/4 (x), 1 (o), 4 (O), 16 (A), 64 (m).
The data collapse and straight line with slope >~ 1 are in
agreement with Egs. (5) and (7). (b) Scaling plot for the
number of surviving A particles, A(t), for d = 3 for injection
rates A = 1 (x), 4 (o), 16 (O), 64 (A), 256 (w). The data
tend asymptotically to a straight line with slope 2/3 (indi-
cated by the solid line), supporting Eq. (11). (c) Plot of the
number of C particles, C(¢), as a function of time for d = 2
and a range of injection rates A [same symbols as in part (a)].
The straight lines which pass through the data correspond to
Eq. (13) with a = (A/7) exp(—a/4D) (in all the simulations
D = 1/2d where d is the dimension of the substrate). The re-
sults obtained for all dimensions are from single Monte Carlo
runs, indicating that the fluctuations are negligible and that
the systems tend to self-average.
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orders gives & = 1/2 and to = 2D /2. Thus, for very long
times, we obtain

C(t) ~2 [2Dt In (;—Zt)] v [d=1]. (8)

Equation (8) is supported by Monte Carlo simulations
shown in Fig. 1(a).

d = 3. Since R < t1/3 [11], then RR — 0 as t — oo.
Therefore we can expand the exponential in Eq. (5) to
first order in RR and solve for R,

4T R3 n AR?

3 4D

From this expression we can see that the leading behavior
of C(t) = 4wR3/3 at large times will be given by

~ \t. (9)

2/3
o) ~ M~ 75 (%) 28 d=3. (10

The total number of surviving A particles, A(t), will be

N_/\_ _3_/\ 2/3752/3 (11)
4D \ 47 '

Thus, for d = 3 the reaction-diffusion processes con-
spire in such a way that in spite of having a constant in-
put, the total density of A particles within the C-region
actually vanishes as t~1/3. Equation (11) is supported
by simulations shown in Fig. 1(b).

d = 2. For the case d = 2, I'(0,z) = E;(x) (the
exponential integral), and Eq. (3) becomes

ealrt) = 2o {El (R_;;) S (ggﬂ S

Equation (5) can be solved by letting R = (at)/?, where
« satisfies o = 2e~ /4D,

Equation (12) together with R and « turns out to be
the ezact solution of Eq. (2) [supporting the assumption
leading to Eq. (3)]. Finally, C(t) can be calculated using
C(t) = nR?; the result,

C(t) =rat [d=2], (13)

is compared with simulations in Fig. 1(c).

The analytic results presented above are amenable to
direct experimental test. In order that the experiments
could be described by our theory, we took into account
the following considerations: (i) The advancing diffus-
ing/reaction front should not be influenced by surface
tension, (ii) constant injection rate, and (iii) accurate
measurability of either C(t) or A(t) as a function of time.

We found that the following experiment is well suited
to meet the above requirements as well as to demonstrate
the theoretical model for the two-dimensional case: a
Petri dish 10 cm in diameter is coated by about 0.1 pum
of silver by evaporation. A 1-2 mm piece of solid iodine
is placed on the thin layer of silver. At room temperature

A(t)

and at atmospheric pressure the iodine sublimizes, and
since the duration of the experiment is not very long, the
piece of iodine acts as a relatively constant and localized
source of iodine. Since the iodine gas is heavier than
air, it creeps on the surface of the silver substrate, and
as a gas it diffuses with no surface tension. From the
surface the iodine penetrates and reacts with the silver
according to the reaction Iy(gas) +2Ag(sotia)y — 2A81 (so1id)-
Since the diffusion-reaction process takes place mainly
upon the surface of the silver, the system is essentially
two dimensional, which greatly simplifies the measuring
process: the Agl is a transparent material, whereas the
silver is highly reflective. As a result, colored rings are
created due to the interference of light reflected from the
inner and outer surfaces of the Agl. The furthermost ring
(which marks the range of the reacted area) is created
by a layer of Agl approximately 500 A in depth. This
indicates that all the iodine gas that reaches a region
of unreacted silver must be absorbed until this depth is
achieved (the amount of iodine required to form such a
layer is equivalent to a column of approximately 1 cm
per unit area, at ~ 1 torr partial vapor pressure of I
at equilibrium). Thus almost no iodine gas diffuses far
beyond the boundary of the Agl.

Since the diffusion on the surface of the plate is quite
fast, the system evolves in a reasonable time and can be
filmed, thus providing a relatively simple and accurate
means to measure the time dependence of the amount of
compound Agl [corresponding to C(t)].

Figure 2 shows the increasing radius R(t) of the outer-
most ring, which marks the range of the Agl compound
on the silver substrate. We find that R ~ t1/2, in agree-
ment with our results for 2D systems.
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FIG. 2. Logarithmic plot of the experimental R(t), the

radius of the outermost interference ring, which marks the
range of the Agl compound on the silver substrate. The best
line fit yields a slope of 0.5028, in agreement with our d = 2
result R = (at)'/?,

1463



VOLUME 70, NUMBER 10

PHYSICAL REVIEW LETTERS

8 MARCH 1993

Before concluding, we note that a transient regime
between the initial and long time growth regimes dis-
cussed above can be expected by noticing that the system
has two “natural” length scales: a diffusive length scale
€p = (4Dt)Y/2, and a volume (or mass balance) length
scale & = (At/9)'/? which corresponds to a strict upper
bound for R(t) as discussed above. When &y > &p, the
growth of C(¢t) will be determined by the “rare events” in
which A particles wander further than the characteristic
diffusion length. This is the case for the long time regime
of 1D systems. On the other hand, when &y < £p, then
C(t) is limited by its upper bound which is the case for
the long time growth of 3D systems. In 2D systems,
the relation between &y and &p is fixed for all times
and it is reflected in the values of « in the large A limit
[ ~ 4D In(\/€)], and the small A limit (o ~ A/7). In 1
and 3D systems there is a crossover time t%, at which both
length scales are equal: ¢, = (4D)%(@=2)(\/Q)?/(d=2) Tt
is for times t > t/, that our asymptotic results hold.

In summary, we have found the long time behavior
of the amount C(t) of reactant and the number A(t)
of surviving A particles for the reaction A (gifusing) +
B(substrate) — Coinerty- Our results can be easily ex-
tended to general d (> 2) by solving Eq. (5), A(t) =
(A\/4D)[Xt/(d)]¥? and C(t) = At — A(t). While our
results strictly refer to either characteristic or average
quantities, they may be useful for the description of sin-
gle systems. This is due to the fact that for long enough
times, the systems appear to be self-averaging to such a
degree that remarkably good “statistics” can be obtained
from a single Monte Carlo run. We support our theoret-
ical results by numerical simulations in d = 1,2, 3 and by
experiments in d = 2.

We thank Mariela Araujo and Sona Prakash for a crit-
ical reading of the manuscript. The Center for Polymer
Studies is supported by grants from NSF and ONR. H.L.
acknowledges support of CONACYT Mexico, while Y.L.,
S.H., and H.E.S. thank the U.S.-Israel Binational Science
Foundation.

[1] T. Nagatani, Phys. Rev. Lett. 68, 1616 (1992), and ref-
erences therein.

1464

[2] M. Almgren and J. Alsins, Isr. J. Chem. 31, 159 (1991);
M. Almgren and R. Johannsson (to be published).

[3] R. Kopelman, in The Fractal Approach to Heterogeneous
Chemistry, edited by D. Avnir (Wiley, Chichester, 1989).

[4] G. H. Vineyard, J. Math. Phys. 4, 1191 (1963); R. J.
Beeler and J. A. Delaney, Phys. Rev. 130, 926 (1963).

[5] R. Ghez, A Primer of Diffusion Problems (Wiley, New
York, 1988).

[6] A. Blumen, J. Klafter, and G. Zumofen, in Optical Spec-
troscopy of Glasses, edited by I. Zschokke (Reidel, New
York, 1986), pp. 199-265.
H. Larralde, P. Trunfio, S. Havlin, H. E. Stanley, and G.
H. Weiss, Nature (London) 355, 423 (1992); Phys. Rev.
A 45, 7128 (1992).
(8] J. Crank, The Mathematics of Diffusion (Oxford Univ.
Press, New York, 1979) 2nd ed.; J. Crank, Free and Mov-
ing Boundary Problems (Oxford Univ. Press, New York,
1987).
Through both the experiments and the Monte Carlo sim-
ulations, we find that the region marked by C particles
(C-region) has radial symmetry as expected (except at
very short times when the structure of the lattice and
the details of the random walk determine the shape of
the C-region), and that the boundary of the C-region
is remarkably smooth. These observations validate the
symmetry assumptions that are used in the analytical
treatment of the problem, but most important, they jus-
tify our assumption that the boundary can be treated
as a relatively sharp locus at a distance R(¢) from the
origin.

[10] A factor indicating the “size” (length, area, or volume
according to the dimension of the system) of the com-
pound particle C should appear on the right hand side of
condition (iii). Throughout this paper we set this factor,
which takes care of the appropriate units of D and R, to
unity.

[11] Since there can be at most one reaction per A parti-
cle, then the total number of reactions C(t) < At. Thus
the radius R(t) of the C-region can grow at best as
R(t) ~ t'/?. For 1D systems an even lower bound can be
found for R(t) by considering systems without reaction,
for which the typical position of the furthermost particle
from the origin grows as (¢1nt)*/? at very large values of
t [see [7] and E. ben-Naim (private communication)]. The
presence of reaction cannot increase this distance, there-
fore we expect R(t) < (tInt)*/2. This argument holds for
other dimensions as well but yields a weaker bound than
t/¢ except at relatively short times.
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