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We study analytically a model for the dynamics of populations and epidemics that includes birth and death
processes in a system of independently diffusing individuals. When birth and death rates are close to each
other, the individuals tend to cluster around their center of mass and the population~disease! territory migrates
as a whole. The clustering phenomenon is caused by the natural asymmetry between birth and death processes,
and does not require any communication among the individuals or between the individuals and the substrate.
@S1063-651X~96!13010-5#

PACS number~s!: 87.10.1e, 05.40.1j

I. INTRODUCTION

Diffusion models, where the features of birth~infection!
and death~recovery! are included, are commonly used for
studying the dynamics of populations, epidemics@1–5#, and
chemical reactions with creation and annihilation processes
@6#. For these ‘‘branching diffusion’’ models, averaged quan-
tities like the mean individual densitŷn(r ,t)& at positionr
and time t can be easily obtained@1,2#. However, since
^n(r ,t)& gives no information about spatial correlations be-
tween two individuals in a single configuration, it cannot
describe effects like clustering or segregation that are ob-
served in field experiments@7–10#.

Here we introduce an interesting branching diffusion

model with reduced fluctuations, where we can calculate the
pair correlation functionP2(r ,t) rigorously. We find two dif-
ferent types of phenomena,migration for short times and
spreading for long times, with a crossover time
;1/(a12a2) that approaches infinity when the birth and
death ratesa1 anda2 become equal.

In the case ofmigration @Fig. 1~a!#, the mean distance
between the individuals saturates, i.e., the individuals cluster
around their center of mass and the population territory~epi-
demics area! does not increase, but moves as a whole with
time. This dynamical localization is basedonlyon the natural
asymmetry between birth~infection! and death~recovery!
processes — birth and infection occur only next to an indi-
vidual, while death and recovery occur everywhere — and

FIG. 1. Positions of 100 diffusing individuals in two dimensions for 2dD51,a250.1, anda150.1001 for several times~a! in the short
time regime and~b! in the long time regime. Different colors refer to different times. The white ring marks the origin, where the individuals
started att50.
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doesnot require any interaction between the individuals or
between the individuals and the substrate. In the case of
spreading@Fig. 1~b!#, the mean distance between the indi-
viduals increases all the time, but the center of the growing
territory almost does not move.

II. MODEL

We considerN0 individuals, initially located at the origin
of a d-dimensional coordinate system. Att50, the individu-
als start to diffuse independently, with a diffusion constant
D. At certain instances of timetk , one randomly chosen
individual gives birth, i.e., is replaced by two individuals~at
the same positionr !, and another randomly chosen indi-
vidual is removed~dies! with probability pd . According to
this rule, the population can never be extinct. At criticality
(pd51), the number of individuals remains constant, and in
this case the model essentially reduces the diffusion repro-
duction model studied by Zhang, Serva, and Polikarpov@11#.
By definition, the death ratea2 and the birth ratea1 are
related topd by a25pda1 @12#.

It is natural to assume that the birth and death processes
are Poissonian, i.e., the incrementsDt between two succes-
sive time instances are exponentially distributed. Since for
N(t) individuals at timet, a1N(t) is the number of birth
events per unit time, it follows that the mean increment time
is ^Dt&51/@a1N(t)#. The mean number of individuals in-
creases exponentially, ^N(t)&5N0exp(Dat), where
Da[a12a2 is the growth rate.

By construction, the fluctuations inN(t) are only caused
by the fluctuations of the time intervalsDt and ~for pd,1)
of the number of dying individuals at each step. Thus the
numberN(t) of individuals shows only weak statistical fluc-
tuations around̂N(t)& ~that vanish in the ‘‘critical’’ case
Da50). In contrast, in the usual branching diffusion models
@1#, where birth and death events occurindependentlywith
ratesa1 anda2 , large fluctuations lead to a nonzero dying-
out probability~which is one in the critical case!. We show
below that our reduced fluctuation model shows rich phe-
nomena in the spatial dynamics of the community, and has
the advantage of being solvable analytically at and above
criticality.

To calculate^n(r ,t)&, we start with the probability den-
sity Pi(r ,t) that thei th individual is at positionr at time t.
Notice that we can trace the ancestory of any given indi-
vidual to a unique ancestor for any given earlier time~see the
genealogical tree!. Thus we can define a generalized trajec-
tory of individual i for all times 0<t8<t by identifying the
position of i for timest8 before its birth with the position of
its unique ancestor at that timet8. Since the diffusion process
is unaffected by the birth process, the statistical properties of
this generalized trajectory are the same as for a single dif-
fusing particle, andPi(r ,t) is identical to the well known
Gaussian probability densityG(r ,t) for a single diffusing
particle to move a distancer during timet,

Pi~r ,t !5G~r ,t ![S 1

4pDt D
d/2

expS 2
r 2

4Dt D , ~1!

whereD is the diffusion constant. The mean individual den-
sity ^n(r ,t)& is simply the product of̂N(t)& andG(r ,t),

^n~r ,t !&5^N~ t !&G~r ,t !. ~2!

Equations~1! and~2! are common for branching diffusion
models@1#. For obtaining the spatial correlations we need to
analyze the genealogical tree of the individuals~see Fig. 2!.
If two individuals i and j at timet have a common ancestor,
their line of ancestors split at some earlier timets( i , j ).0.
We definets( i , j )[0, if i and j have no common ancestor.
By definition, the generalized trajectories ofi and j are iden-
tical for times smaller thants( i , j ). For times larger than
ts( i , j ), the trajectories are that of two independently diffus-
ing particles starting at the common position ofi and j at
time ts( i , j ). Thus the probability density for the distancer
between the two individuals for a givents[ts( i , j ) is simply
G„r ,2(t2ts)…, where the factor of 2 is due to the fact that
both individuals are moving.

The pair correlation functionP2(r ,t) is defined as the
probability density that, after timet, the distance between
two individuals isr , and can be written as

P2~r ,t !5E
0

t

dtsc t~ ts!G„r ,2~ t2ts!…, ~3!

wherec t(ts)dts is the probability that the generalized trajec-
tories of an arbitrarily chosen pair at timet were generated
from a common ancestor in the time interval between
ts2dts and ts . By definition, *0

t c t(ts)dts51. As we show
below,c t(ts) can be calculated rigorously for arbitrary val-
ues ofN0, a1 anda2 . For convenience, we begin with the
critical casepd51 (Da50).

III. CRITICAL CASE

For pd51, N(t)5N0 remains constant. To calculate
c t
(c)(ts) ~the superscriptc denotes the critical case!, we con-

sider at timet that fraction of pairs that was generated from
a common ancestor betweents2dts andts , and divide it by
that fraction of pairs that was generated from a common
ancestor beforets . Clearly, this ratio is independent oft and
identical to the number of pairs generated at any timets ,
N0a1dts , divided by the total number of pairs
N0(N021)/2. Thus

c t
~c!~ ts!dts

*0
tsc t

~c!~ ts8!dts8
5

2N0a1dts
N0 /~N021!

[
dts
t0

, ~4!

FIG. 2. The genealogical tree forN053 for ~a! the critical case,
Da50; and~b! a growing community,Da.0.
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wheret0[(N021)/2a1 . The solution of this equation is

c t
~c!~ ts!5t0

21expS 2
t2ts
t0

D1expS 2
t

t0
D d~ ts!. ~5!

The interpretation of Eq.~5! is clear: The splitting events are
Poisson distributed with time constantt0, which for large
times can be regarded as the mean value oft2ts . The pref-
actor of thed function is the probability that two individuals
have no common ancestor.

The strong spatial correlations between the individuals
caused by the natural asymmetry between birth and death
processes show up most clearly in the mean-squared pair
distancê r 2

2(t)&5*ddr r2P2(r ,t), which can be easily calcu-
lated by using Eq.~3! and changing the order of integration,

^r 2
2~ t !&54dDE

0

t

dtsc t
~c!~ ts!~ t2ts!5r0

2F12expS 2
t

t0
D G ,

~6!

with a localization radiusr0[A4dDt0. Equation~6! shows
that ^r 2

2(t)& is linear in t for short timest!t0, while for
large timest@t0, ^r 2

2(t)& saturates and becomes identical to
r0
2. Accordingly, after an initial spreading period, the indi-
viduals stay together in one community, that typically covers
a region of radiusr0.

We can study this feature further by calculating the pair
correlation function itself, which can be obtained by insert-
ing Eq. ~5! into Eq. ~3!,

P2
~c!~r ,t !5S 1

8pD D d/2F t2d/2expS 2
t

t0
2

r 2

8Dt D
1t0

21E
0

t

dtsts
2d/2expS 2

ts
t0

2
r 2

8Dts
D G . ~7!

For short times,t!t0, P2
(c)(r ,t) is dominated by the first

term in the brackets, and we recover the pair correlation
function of independently diffusing individuals, without birth
and death processesP2

(c)(r ,t)5G(r ,2t). For sufficiently
large times, the first term vanishes, and the second term be-
comes independent of time since the upper limit of the inte-
gration can be extended to infinity. Hence, for larget,
P2
(c)(r ,t) becomes stationary, andP2

(c)(r ,t)5P2
(c)(r ,`),

which reflects the fact that the interindividual distance satu-
rates and there is no spreading. The straightforward calcula-
tion of the integral leads to a modified Bessel function,
which for large r can be approximated by an exponential
times a power ofr , yielding

P2
~c!~r ,`!;r2~d21!/2expS 2A2d

r

r0
D . ~8!

Thus the shape ofP2
(c)(r ,t) changes from a Gaussian~typical

for diffusion! to a simple time-independent exponential
~typical for localized behavior! at large times.

Next we consider the motion of the center of mass of the
community, ^r cm

2 (t)&[^(N21( ir i)
2&, which can be ex-

pressed by^r 2
2(t)&[„N(N21)…21( i , j^(r i2r j )

2& and the

mean-squared displacement^r 2(t)&[N21( i^r i
2&52dDt,

^r cm
2 ~ t !&5^r 2~ t !&2

N021

2N0
^r 2

2~ t !&. ~9!

Equation~9! follows directly from the definitions of the
three quantities. By substituting Eq.~6! into Eq. ~9!, and
expanding the exponential function up to the second order,
one can identify three different time regimes in^r cm

2 (t)&:

^r cm
2 ~ t !&55

2dD
t

N0
for t!

2t0
N021

2dD
N021

2N0t0
t2 for

2t0
N021

!t!t0

2dDt for t@t0 .

~10!

Only for very short times,t!2t0 /(N021), the center of
mass moves as in the case of independently diffusing par-
ticles. In the intermediate time regime 2/(N21)!t/t0!1,
^r cm

2 (t)&}t2 shows ballistic behavior, while for long times
^r cm

2 (t)&'^r 2(t)&52dDt, independent ofN0.
Thus we have found that in the critical case (Da50) the

community shows clustering and migration behavior after an
initial spreading period fort,t0: The mean-squared pair
distance becomes constant,^r 2

2(t)&5r0
2, and hence the indi-

viduals are localized around their center of mass within a
‘‘ball’’ of radius r0 @see Fig. 1~a!#. In this state of dynamical
localization, the shape of the pair correlation function is a
simple exponential, which is typical for localized behavior,
and the community as a whole moves like a single diffusing
entity.

IV. GENERAL CASE

Next we consider the noncritical caseDa.0, where the
number of individuals,N(t), increases with time. In this
case, the time scalet0 becomes time dependent,
t0→t(t8)[„N(t8)21…/2a1.t0e

Dat8, and Eq.~4! is gener-
alized to

c t~ ts!dts

*0
tsc t~ ts8!dts8

5
dts

t0e
Dats

. ~4a!

From the solution of Eq.~4a!,

FIG. 3. The mean-squared pair distance in units of 4dD as
function of time for t051, Da50.01 ~—!, and the approximate
result (•••) for the same parameters. For comparison, the results
for t05` ~---! andt051 andDa50 ~-••-••) are also shown.
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c t~ ts!5S 1

t~ ts!
1d~ ts! DexpS 1

Dat~ t !
2

1

Dat~ ts!
D ,

a straightforward calculation yields

^r 2
2~ t !&5

4dD

Da
expS 1

t~ t !Da D E1S 1

t~ t !Da D ,
where E1(x)[*x

`exp(2j)/jdj is the exponential integral
function. Figure 3 showŝr 2

2(t)& in units of 4dD for t051
andDa50.01. For comparison we also show the curves for
independently diffusing individuals without death and birth
processes (t05`) and for the critical case (t051,
Da50). For short timest!Da21, the curve forDa50.01
follows the critical curve, and shows a regime of dynamical
localization, since the number of individuals is nearly con-
stant. For very long times, the curve fort05` is ap-
proached, which indicates that the correlations induced by
the asymmetry between birth and death processes become
irrelevant. In the intermediate time regime, the mean-squared
pair distance grows exponentially.

A surprisingly good approximation for this overall behav-
ior can be found by using the equation for the critical case,
Eq. ~6!, and replacing the time independent scalest0 and
r0 by the time dependent onest(t)5t0exp(Dat) and
r(t)[A4dDt(t). This approximation is shown as a dotted
line in Fig. 3.

V. SUMMARY

We have studied a fluctuation reduced branching diffu-
sion model, for which we could calculate rigorously the cor-
relations between the individuals. We have found that the
dynamical behavior of the community depends crucially on
the growth rateDa. For times t smaller than the inverse

growth rateDa21, the correlations lead to clustering of the
individuals, and the community migrates as a whole. This
clustering phenomenon is caused by the natural asymmetry
between birth and death processes, and does not require in-
teractions or communications among the individuals or be-
tween the individuals and the substrate. Fort@Da21, the
correlations become irrelevant, and the community shows a
normal spreading behavior@13–15#.

After this work was submitted, we learned of a possible
application of our model to evolution, when mutation of
genes is considered as diffusion in the high-dimensional ge-
netic space. The asymmetry between the death and birth of
individuals leads to a dynamical localization such that differ-
ent individuals of a given species will have similar genetic
code. Indeed, Tsimring, Levine, and Kessler@16# used a
similar model to explain the recent experimental observation
by Novellaet al. @17# of virus evolution in fitness space. In
the work by Tsimring, Levine, and Kessler, a model for virus
mutation, which can be regarded as diffusion in fitness space,
was studied. They found that the viruses become localized in
a single cluster in fitness space, where the center of mass
performs adirectedmotion due to an anisotropy of the ge-
netic space. Although this spatial anisotropy was not in-
cluded here, both models show a strict analogy, since for
both the localization effect is caused by the asymmetry be-
tween death and birth. In our model, we expect a directed
motion of the center of mass, if the spatial anisotropy is
included.
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