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Clustering of independently diffusing individuals by birth and death processes
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We study analytically a model for the dynamics of populations and epidemics that includes birth and death
processes in a system of independently diffusing individuals. When birth and death rates are close to each
other, the individuals tend to cluster around their center of mass and the pop(iaseasgterritory migrates
as a whole. The clustering phenomenon is caused by the natural asymmetry between birth and death processes,
and does not require any communication among the individuals or between the individuals and the substrate.
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[. INTRODUCTION model with reduced fluctuations, where we can calculate the
pair correlation functiorP,(r,t) rigorously. We find two dif-
Diffusion models, where the features of birtinfection  ferent types of phenomenajigration for short times and
and death(recovery are included, are commonly used for spreading for long times, with a crossover time
studying the dynamics of populations, epidenfits5], and ~1/(a,— a_) that approaches infinity when the birth and
chemical reactions with creation and annihilation processedeath ratesy, and a_ become equal.
[6]. For these “branching diffusion” models, averaged quan- In the case ofmigration [Fig. 1(a)], the mean distance
tities like the mean individual densign(r,t)) at positionr between the individuals saturates, i.e., the individuals cluster
and timet can be easily obtainefll,2]. However, since around their center of mass and the population territepj-
(n(r,t)) gives no information about spatial correlations be-demics arepdoes not increase, but moves as a whole with
tween two individuals in a single configuration, it cannottime. This dynamical localization is basedly on the natural
describe effects like clustering or segregation that are obasymmetry between birtkinfection) and death(recovery
served in field experimen{g-10|. processes — birth and infection occur only next to an indi-
Here we introduce an interesting branching diffusionvidual, while death and recovery occur everywhere — and
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FIG. 1. Positions of 100 diffusing individuals in two dimensions fatR=1, « _=0.1, anda, = 0.1001 for several time®) in the short
time regime andb) in the long time regime. Different colors refer to different times. The white ring marks the origin, where the individuals
started at=0.
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doesnot require any interaction between the individuals or i 2 3 I 2 3 4 5
between the individuals and the substrate. In the case of L ool L1 .
spreading[Fig. 1(b)], the mean distance between the indi- {'\ k “g’l t‘
viduals increases all the time, but the center of the growing - :
territory almost does not move. .
B I I s T
Il. MODEL \l
it B S t e et
We considelN, individuals, initially located at the origin
of ad-dimensional coordinate system. &t 0, the individu- t r t
als start to diffuse independently, with a diffusion constant (a) (b)
D. At certain instances of timg¢,, one randomly chosen
individual gives birth, i.e., is replaced by two individuast FIG. 2. The genealogical tree fbty=3 for (a) the critical case,

the same positiorr), and another randomly chosen indi- Aa=0; and(b) a growing communityAa>0.

vidual is removeddies with probability py. According to

this rule, the population can never be extinct. At criticality (n(r,t))=(N(t))G(r,t). (2

(pg=1), the number of individuals remains constant, and in

this case the model essentially reduces the diffusion repro- Equationg1) and(2) are common for branching diffusion

duction model studied by Zhang, Serva, and Polikajddy. = models[1]. For obtaining the spatial correlations we need to

By definition, the death rate_ and the birth ratex, are  analyze the genealogical tree of the individu@se Fig. 2

related topy by a_=pga, [12]. If two individualsi andj at timet have a common ancestor,
It is natural to assume that the birth and death processdbeir line of ancestors split at some earlier timé,j)>0.

are Poissonian, i.e., the incremedts between two succes- We definety(i,j)=0, if i andj have no common ancestor.

sive time instances are exponentially distributed. Since foBy definition, the generalized trajectoriesicdindj are iden-

N(t) individuals at timet, «,N(t) is the number of birth tical for times smaller tharn(i,j). For times larger than

events per unit time, it follows that the mean increment timet((i,j), the trajectories are that of two independently diffus-

is (At)=1[aN(t)]. The mean number of individuals in- ing particles starting at the common positionioénd j at

creases  exponentially, (N(t))=NgyexpAat), where timetg(i,j). Thus the probability density for the distance

Aa=a, —a_ is the growth rate. between the two individuals for a giveg=tg(i,j) is simply
By construction, the fluctuations iN(t) are only caused G(r,2(t—ts)), where the factor of 2 is due to the fact that

by the fluctuations of the time intervalst and (for py<<1) both individuals are moving.

of the number of dying individuals at each step. Thus the The pair correlation functiorP,(r,t) is defined as the

numberN(t) of individuals shows only weak statistical fluc- probability density that, after timg, the distance between

tuations aroundN(t)) (that vanish in the “critical” case two individuals isr, and can be written as

Aa=0). In contrast, in the usual branching diffusion models

[1], where birth and death events ocdndependentlywith t

ratesa . anda_ , large fluctuations lead to a nonzero dying- Po(r,t)= fodtswt(tS)G(r’z(t_ts))’ (3)

out probability (which is one in the critical ca¥eWe show

below that our reduced fluctuation model shows rich phewherel//t(ts)dts is the probabmty that the genera"zed trajec-
nomena in the spatial dynamics of the community, and hagyries of an arbitrarily chosen pair at timevere generated
th_e' ad_vantage of being solvable analytically at and abov@om a common ancestor in the time interval between
criticality. _ N to—dts andt,. By definition, [§y(t)dt;=1. As we show
To calculate(n(r,t)), we start with the probability den- pejow y.(t.) can be calculated rigorously for arbitrary val-

sity_Pi(r,t) that theith individual is at positiorr at ti_met._ “ues ofNp, @, ande_ . For convenience, we begin with the
Notice that we can trace the ancestory of any given indiyitical casepy=1 (Aa=0).

vidual to a unique ancestor for any given earlier tifsee the
genealogical tree Thus we can define a generalized trajec-
tory of individuali for all times O<t’'<t by identifying the
position ofi for timest’ before its birth with the position of For ps=1, N(t)=N, remains constant. To calculate
its unique ancestor at that tinhe Since the diffusion process ()(t,) (the superscript denotes the critical caewe con-
is unaffected by the birth process, the statistical properties Ofider at timet that fraction of pairs that was generated from
this generalized trajectory are the same as for a single dify .o mmon ancestor between- dt, andt, and divide it by
fusing particle, andP;(r,t) is identical to the well known o4 fraction of pairs that was generated from a common
Gaussian probability densit(r,t) for a single diffusing  5ncestor before,. Clearly, this ratio is independent band
particle to move a distanaeduring timet, identical to the number of pairs generated at any time

(2 Noa,.dts, divided by the total number of pairs

di2
Pi(r,t)=G(r,t)E(m) ex;{ - m) (1) No(No—1)/2. Thus

(©)(ty)dt 2Nga dty  dt
whereD is the diffusion constant. The mean individual den- i (t9dts 0 s = 4)

S ©mndr _
sity (n(r,t)) is simply the product ofN(t)) and G(r,t), Jewi®(t9dtg No/(No=1) 7o

lll. CRITICAL CASE
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where7o=(Ny—1)/2a, . The solution of this equation is

s

70

19t =19 1exp(

+exp< — L) oty). (B
70

The interpretation of EqJ5) is clear: The splitting events are
Poisson distributed with time constang, which for large
times can be regarded as the mean value-af,. The pref-
actor of thes function is the probability that two individuals
have no common ancestor.

The strong spatial correlations between the individuals
caused by the natural asymmetry between birth and death
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processes show up most clearly in the mean-squared pair

distance(r3(t))=fd’r2P,(r,t), which can be easily calcu-
lated by using Eq(3) and changing the order of integration,
2l

1- ex;{ -—
0
(6)

with a localization radiupy=4dD 7. Equation(6) shows
that (r3(t)) is linear int for short timest<r,, while for

2 t 2 t
<r2(t)>=4c|Dfoolts O (te)(t—tg)=p3

large timest> 7o, (r3(t)) saturates and becomes identical to

pﬁ. Accordingly, after an initial spreading period, the indi-

viduals stay together in one community, that typically covers

a region of radiugy.
We can study this feature further by calculating the pai

correlation function itself, which can be obtained by insert-

ing Eq. (5) into Eq. (3),

1 d/2
8’7TD) [t_dlzexi{

2

t r

PR (r,t)=

|

) 8Dt
t t rz
+751J0dtst;d’zexp( - T—Z— T ” (7
S

For short timest< 7o, P{(r,t) is dominated by the first
term in the brackets, and we recover the pair correlatio
function of independently diffusing individuals, without birth
and death processeB(ZC)(r,t)=G(r,2t). For sufficiently
large times, the first term vanishes, and the second term

gration can be extended to infinity. Hence, for large
P{(r,t) becomes stationary, and{(r,t)=P{)(r =),

FIG. 3. The mean-squared pair distance in units afD4as
function of time forry=1, Aa=0.01 (—), and the approximate
result (---) for the same parameters. For comparison, the results
for 7= (---) and7y=1 andAa=0 (-- --- -) are also shown.

No—1
(ren() =(r?(t) = 5 (r3(v). E)
0
Equation(9) follows directly from the definitions of the
three quantities. By substituting E¢) into Eq. (9), and
expanding the exponential function up to the second order,

one can identify three different time regimes(ir§(t)):

2dD~ for t<—"
r N_O or No_l
<r(2:m(t)>: No—1 2 279 (10
—_— —<kt<
ZdDZNOTOt for No—1 t<7g

Only for very short timest<27,/(Ng—1), the center of
mass moves as in the case of independently diffusing par-
ticles. In the intermediate time regime R/ 1)<<t/73<<1,
(r2.(t))=t? shows ballistic behavior, while for long times
(r2.(t))=(r%(t))=2dDt, independent oN,.

M Thus we have found that in the critical caskea=0) the
community shows clustering and migration behavior after an
initial spreading period fot<r,: The mean-squared pair

b%— 2000\ _ 2 -
. : . oo ) istance becomes constaity(t))=pg, and hence the indi-
comes independent of time since the upper limit of the inte; 2(1)=po

viduals are localized around their center of mass within a
“ball” of radius pq [see Fig. 1a)]. In this state of dynamical
localization, the shape of the pair correlation function is a

which reflects the fact that the interindividual distance Satu'simple exponential, which is typical for localized behavior,
rates and there is no spreading. The straightforward calculgyng the community as a whole moves like a single diffusing
tion of the integral leads to a modified Bessel function,emity_
which for larger can be approximated by an exponential

times a power of, yielding V. GENERAL CASE

Next we consider the noncritical cadex>0, where the
number of individuals,N(t), increases with time. In this
case, the time scalery, becomes time dependent,
Thus the shape &’ (r,t) changes from a Gaussidypical -, (t')=(N(t') - 1)/2a, = r,e**"’, and Eq.(4) is gener-
for diffusion) to a simple time-independent exponential zjized to
(typical for localized behavigrat large times.

Next we consider the motion of the center of mass of the
community, (r2.(1))=((N"*=;r))?), which can be ex-
pressed by(r3(t))=(N(N-1))"*%; ((ri—r;)?) and the
mean-squared displacemdn(t))=N"13,(r?=2dDt,

(8)

r
P (r,00)~r (4" ViZgxg — \/2dp—
0

wt(ts)dts _ dts
Teun(todty  moe™®ts’

(4a)

From the solution of Eq(4a),
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1 1 1 growth rateAa 1, the correlations lead to clustering of the
_ " _ i X . .
P(ty) o) o(ts) |ex Aar) Aarty)’ individuals, and the community migrates as a whole. This
clustering phenomenon is caused by the natural asymmetry
a straightforward calculation yields between birth and death processes, and does not require in-
teractions or communications among the individuals or be-
5 4dD 1 1 tween the individuals and the substrate. EBrAa 1, the
(ra(t))= Aa ex Dha | ZDAa)" correlations become irrelevant, and the community shows a

normal spreading behavi¢t3-15.

After this work was submitted, we learned of a possible
application of our model to evolution, when mutation of
genes is considered as diffusion in the high-dimensional ge-
netic space. The asymmetry between the death and birth of
individuals leads to a dynamical localization such that differ-
ent individuals of a given species will have similar genetic
code. Indeed, Tsimring, Levine, and Kess[d6] used a
similar model to explain the recent experimental observation
by Novellaet al. [17] of virus evolution in fitness space. In

where Ej(x)=[;exp(—&)/&d¢ is the exponential integral
function. Figure 3 showsér3(t)) in units of 4dD for 7,=1
andA «=0.01. For comparison we also show the curves fo
independently diffusing individuals without death and birth
processes f,=«) and for the critical case 74=1,
Aa=0). For short times<Aa ™1, the curve forAa=0.01
follows the critical curve, and shows a regime of dynamical
localization, since the number of individuals is nearly con-

stant.thr Vﬁ.ryh I_ondg tltmest,h t??h curve flo';(?:w 'ISd ap-d bthe work by Tsimring, Levine, and Kessler, a model for virus
proached, which indicates that In€ correlations INAUCEd LY, iation, which can be regarded as diffusion in fitness space,

Fhel asyrrt1rr|1ettrr)]/ l:_)ettweend.bltrtht_ and dgath ﬁ:ocesses becoryis studied. They found that the viruses become localized in
rrelevant. In th€ intermediate ime regime, the mean-square single cluster in fithess space, where the center of mass

pair diStanC.e grows exponent_ially: . performs adirectedmotion due to an anisotropy of the ge-

. A surprisingly good approximation for this OVG“"?"_' behav- netic space. Although this spatial anisotropy was not in-

Er C%n be (fjoundl by us[[rrllg tthe equgtlon fgr t?e critical gasecluded here, both models show a strict analogy, since for
9. (6), and replacing the time independent scatgsan both the localization effect is caused by the asymmetry be-

Po b_y the time dependent ones(t)=7oexplat) and iy ean geath and birth. In our model, we expect a directed
p(t)=y4dD(1). This approximation is shown as a dotted mqtion of the center of mass, if the spatial anisotropy is

line in Fig. 3. included.
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