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Abstract. We study the structural and dynamical properties of the clusters generated by a 
nearest-neighbour random walk embedded in a d-dimensional space. We have focused 
on the non-trivial case in which the cluster is generated in d = 3. The structure of this 
cluster is characterised by loops for all length scales on the one hand and by the fact that 
deadends are negligible (upon scaling) on the other hand. The cluster is very dilute and 
is characterised by fractal dimension d, = 2 and chemical dimension d, = 1.29 * 0.04. From 
these results it follows that i = d , / d , = $ ,  which is consistent with the formula i = 2 / d  
( 2 s  d C4),  obtained using a Flory-type argument. The dynamical diffusion exponents d, 
and d k  were calculated using the exact enumeration method and found to be d, = 3.45 * 0.10 
and dk = 2.2850.05. Our results suggest that the effect of loops is small but not negligible. 
We also calculated the fracton dimensionality of the cluster and obtained d,= 1.14~t0.02. 
A scaling function is presented for the end-to-end mean square displacement of a random 
walk performed on a random walk cluster. This scaling function is supported by our 
numerical results. 

1. Introduction 

The structure of random aggregates is currently a subject of intensive study [ 1-81. The 
main reason for the recent interest in growth models is their relevance to experiment 
[9]. Another reason for this interest is that growth models exhibit a new type of 
dynamical scaling, which is related to the geometrical properties of the aggregate. The 
structural and dynamical properties of aggregation models, such as diffusion-limited 
aggregation ( DLA), cluster-cluster aggregation and cluster growth models, have been 
extensively studied. However, the structure of the cluster generated by a random walk 
has received little consideration [ 10-121. The main properties of interest are the fractal 
dimension df,  transport properties characterised by diffusion and resistivity exponents 
(d, and f, respectively) and the fracton dimensionality [ 11 d, = 2df/ d, . 

In this paper we study the fundamental problem of the structure and properties of 
the fractal generated by a nearest-neighbour random walk (RW) of N steps embedded 
in d-dimensional space. The properties of RW have been studied for many years [13], 
both for their intrinsic mathematical interest and for their application to a variety of 
physical problems in solid state physics and in polymer physics. Although many 
properties of the RW model are now understood, a complete study has never been 
carried out of the structure of the RW cluster, i.e. the random aggregate generated by 
the RW. A principal application of this model is the transport properties in porous 
sedimentary rocks of low porosity [14]. It has been observed that such materials can 
retain a connected rod space down to extremely low values of porosity. This fact is 
inconsistent with a common approach to microscopically disordered random media 
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in which the pore space is modelled as a percolation network and becomes disconnected 
at much larger porosity. The pore space is presumably correlated and a RW cluster 
was suggested [lo] as a model which guarantees its connectedness. 

This paper is organised as follows. In § 2, we introduce and describe the two 
possible models of the RW cluster. In § 3, we discuss its fractal dimension and its 
relation to the fractal dimension of the RW that generates the cluster. The structure 
of the cluster in the chemical metric is studied both analytically and numerically in 
§ 4. We discuss the transport properties of the RW cluster in § 5.  In 0 6 we derive a 
scaling form for the end-to-end mean square displacement of an N2-step RW performed 
on a cluster generated by an NI-step RW. In § 7, we present a numerical calculation 
of the diffusion exponents, d, and d: and the fracton dimensionality d, in d = 3. We 
also present numerical results which support our scaling form suggested in 0 6. A 
discussion of the results and remaining open questions are presented in 0 8. 

2. The random walk cluster models 

We have studied cluster aggregates generated by the following growth method. A 
random walker starts at the origin of a d-dimensional hypercubic lattice. Each bond 
visited by the RW is considered an element of the cluster. There .are two possibilities 
to define the mass and the conductivity of each bond in the cluster. (a )  The mass and 
the conductivity of each bond is proportional to the number of times the RW has passed 
through it. ( b )  The mass and the conductivity of each bond is unity, independent of 
the number of times it has been visited. 

The two RW cluster models are in the same universality class when generated in 
space with d 3 4. This is due to the fact that, for a RW in d 2 4, loops can be neglected 
[15] and both RW models are in the same universality class as SAW. In this case, the 
mass of the cluster is proportional to the number of steps of the RW (or SAW) which 
generate the cluster. For d < 4, loops in RW cannot be neglected, and thus a RW cluster 
is different from a SAW cluster which, by definition, has no loops. 

The above two definitions for the RW cluster raise the following questions. Is there 
a critical dimension above which the two models belong to the same universality class 
below d =4? What are the physical properties of the two models above the critical 
dimension and what are the differences between the two models below it? These 
questions will be discussed in the following sections. 

3. The fractal dimension of the cluster 

The fractal dimension df of a RW cluster is defined by the relation 

( R2(  N))df’2 - M ( N )  (3.1) 
where R ( N )  is the linear size of the cluster generated by a RW performing N steps 
and M(N) is the mass of the cluster defined in 0 2. The exponent df is a measure of 
the compactness of the cluster. Another exponent characterising a RW is the diffusion 
exponent d, defined by the relation 

(R2(N) )dw’2-  N. , (3.2) 
The exponent d, is a measure of the winding of the random walk. From (3.1) and 
(3.2) it is easy to see that both definitions coincide when the mass M(N)  scales as N. 
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A simple example in which this condition is fulfilled is the cluster generated by a 
self-avoiding random walk (SAW). 

In model ( a ) ,  the mass of each cluster element is proportional to the number of 
times it has been visited by the RW and thus the mass of the cluster M ( N )  scales as 
N from which it follows that both definitions of d ,  and d f  coincide for all d. This is 
not the case for model ( b ) ,  since the mass of the cluster in model ( b )  is proportional 
to the number of distinct sites S ( N )  visited by a RW which scales as 

d < 2  

d > 2.  
M ( N ) - S ( N ) -  d = 2  ( 3 . 3 )  

From this functional form we conclude that, for clusters generated in d 2 2, the two 
definitions of the fractal dimension coincide. However, d ,  and d f  are different for 
clusters generated in d < 2.  From the above discussion, it follows that d = 2 is a critical 
dimension above which the two models belong to the same universality class. Note 
that when the RW cluster is generated on a fractal substrate with fracton dimension 
d , ,  the Euclidean dimension d appearing in ( 3 . 3 )  and in the above conclusions should 
be changed to d ,  [ l ] .  In this case, the critical dimension is d,  = 2.  

The fractal dimension of the cluster in model ( a )  is d f =  2 ,  independent of d,  and 
for a RW cluster generated on a fractal substrate, d f  is equal to the fractal dimension 
of the diffusion on the substrate. In model ( b )  one must distinguish between two cases. 
When the RW cluster is generated in space with d S 2, it is space filling, from which 
it follows that its fractal dimension is equal to the dimension of the space. (In the 
case where the RW cluster is generated on a fractal substrate with d , < 2 ,  then d f  is 
equal to the fractal dimension of the substrate.) When the cluster is generated in space 
with d > 2,  its fractal dimension is d f =  2, independent of d, since d ,  = 2 for RW in 
Euclidean space. When calculating d f  in numerical simulations we expect to observe 
correction to the asymptotic value df = 2.  This results from the correction to the scaling 
form of S ( N )  for finite N [ 1 3 ] .  In d = 2 ,  S ( N )  scales as N/log(N) from which it 
follows that df = 2 - ( 2 / N )  In N. In d = 3, S ( N )  scales as N + a m  and thus d f  = 
2 - a / ( m  log N ) ,  and in d = 4 ,  S (  N )  scales as N + a log( N ) ,  from which it follows 
that d f  = 2 - a /  N. As can be seen, the correction becomes less important as we increase 
the dimension of the space in which the cluster is generated. 

4. The chemical dimension 

Two metrics have been found useful for the characterisation of distance on a fractal 
[ 6 ] .  One of these is obviously the geometric distance r and the second is the chemical 
distance 1 defined as the shortest distance between two points as measured along the 
structure. In analogy to the fractal dimension which characterises the compactness of 
the cluster in the Euclidean metric, we can define the chemical dimension d,  (or graph 
dimension) which characterises the compactness of the cluster in the chemical metric: 

- 
M ( l ) - l d f  ( 4 . 1 )  

where M ( 1 )  is the average mass of a subcluster which consists of 1 chemical shells. A 
chemical shell consists of all sites that are at a chemical distance 1 from an arbitrary 
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site defined as the origin. The two metrics are connected by the exponent v" which is 
defined by the relation 

- 
R2(1) - 12;  (4.2) 

- 
where R2( I )  is the mean square radius of the lth chemical shell. The physical interpreta- 
tion of this definition is that the exponent v" is a measure of the winding of the shortest 
path connecting pairs of sites in the cluster. Using the definitions of the fractal 
dimension, M - Rdf and the graph dimension M - I d )  we conclude that the exponent 
v" is 

v"= d l l d f .  (4.3) 
The exponent v" can be shown to be bounded by 

The upper bound is due to the fact that the minimum value of 1 is R (as in Euclidean 
space). The lower bound is the exponent Y of SAW ( ( R 2 (  N ) )  = U N * ~ ) ,  where in the 
parenthesis of (4.4) we give the Flory approximate value of v for SAW [16]. This bound 
arises from the inequality N 2 1 (where N is the number of steps the random walk 
has performed between visiting the two sites). In SAW clusters N = 1 and the two 
exponents v" and vSAW coincide. Since loops are allowed in RW clusters, N 3 1 and it 
thus  follow^ that ir 2 vSAW. 

In model ( a )  the mass of the cluster is proportional to the number of steps, 
M ( 1 ) a  ldIa N and R 2 a  N a  12', from which it follows that 

2v"=d, for all d. (4.5) 
This relation is valid also for model ( b )  for clusters generated in d 3 2. 

The values for v" and dl in d = 1 ,  2 and 4 dimensions can be evaluated (see table 
1) by the following simple arguments. The two models differ only for d = 1. In model 
( a ) ,  d f  = 2 and, since R 1, it follows that v" = 1 and dl = 2. For model ( b ) ,  d f  = 1 and, 
since R = 1, it follows that v"= 1 and dl = 1 .  In d = 2 for N + ~ 3 ,  the cluster spans the 
whole space uniformly. Thus, it is characterised by d f  = 2 and R = 1, from which it 
follows that v" = 1 and dl = 2 for both models. For d 2 4, loops can be neglected upon 
scaling [16], i.e. N a l ,  from which it follows that ir=i and d l =  1 .  These results are 
summarised in table 1. When the cluster is generated in d = 3, the exponents dl and 
v" cannot be evaluated using the above simple arguments. This occurs because, on the 
one hand, the cluster is not space filling (as in d = 2) and, on the other hand, the loops 
in the cluster cannot be neglected (as in d 2 4 ) .  Thus, we used numerical simulation 
to c a w t e  dl and v" for clusters generated in model ( b )  in d = 3. We calculated M(1)  
and R2(1) averaged typically over 1000 clusters (see figures 1 and 2).  It is seen from 

Table 1. Summary of exponents characterising RW clusters. 

d 4 dl V d c l  dj2' 

1 1b/2a 1b/2a 1 2 lb/2" 

4 2 1 2 4 1 

2 2 2 1 2.5 i 0.05 1.6 
3 2 1.29 i 0.04 0.68 * 0.02 3.45 i 0.10 1.14 i 0.02 

I 
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0 2 4 6 
I n  I 

Figure 1. Plot of the average M ( I )  of the cluster generated by a RW in a three-dimensional 
cubic lattice as a function of I on a double logarithmic scale. The clusters were generated 
by a RW of 200,400,600, 800, 1000, 2000,3000,4000, 5000, 10 000 and 15 000 steps. From 
the slope of these graphs, we obtain d,  = 1.29 * 0.04. 

In I 

Figure 2. Plot of the mean square radius I?’([) of the cluster generated by a R W  in a 
three-dimensional cubic lattice as a function of I on a double logarithmic scale. The clusters 
were generated by RW in the lengths mentioned in figure 1. From the slope of these graphs, 
we obtain 2; = 1.36 * 0.04. 
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these figures that, by increasing the number of steps of the generating random walker, 
the slope of the graph becomes larger and converges to an asymptotic value. From 
the asymptotic slopes we obtained d, = 1.29 * 0.04 and 2 ;  = 1.36 * 0.04. The exponent 
; was also calculated from dynamical exponents. This method yields ~7 c- 3 which is 
very close.to the above results and will be discussed later in $ 7 .  

The results summarised in table 1 suggest the following conjecture: 

; = 2 / d  (4 .6)  
implying that the lower critical dimension for this problem is d :  = 2 and the upper 
critical dimension is d ;  = 4 .  To support (4 .6) ,  we present a Flory-type argument based 
on the following free energy approximation: 

R’ R2 
1 R  

F--+,l. (4 .7 )  

Equation (4 .7 )  contains two terms: the first is the usual term representing the entropy 
whereas the second term represents the interaction energy. The interaction energy is 
assumed to be proportional to the number of crossings in the path of length 1, which 
scales as I times R2/Rd which is the probability that a site is occupied. Minimising 
the free energy we obtain Rd  Oc 1 2 ,  from which follows (4 .6 ) .  

5. Transport properties of RW clusters 

When studying the transport properties, one has to distinguish between two regimes: 
the cluster generated in space with d ,  below 2 and with d ,  above 2. This distinction 
results from the fact that S (  N) scales as [ 11 

( 5 . 1 )  

The index ( 1 )  represents exponents characterising the space in which the cluster was 
generated and the index ( 2 )  represents the exponents which characterise the generated 
RW cluster. Since S (  N )  cc R (  N)d? ,  it follows that 

The exponent d characterising the cluster resistivity is defined by the relation 

p ( N )  - R ( W i  (5 .3 )  

[= d $ ) -  d( ’ )  f (5.4) 

where p ( N )  is the average resistivity of a cluster generated by a N-step RW. Using 
the Einstein relation between diffusion and transport exponents [ 171 

where d c )  is the fractal dimension ofthe diffusion on the cluster (RW on a RW), we obtain 

( 5 . 5 )  

In the case d : ’ )  < 2 we have to distinguish between the two models. In model ( b )  the 
cluster generated is space filling, i.e. d y ’  = d ( ’ )  a nd d c ) =  d c ) ,  from which it follows 
that d p ’ =  d ( ’ )  s a nd 

p (  N) - N1-d!l)/2 d i ’ )  < 2. ( 5 . 6 ~ )  
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In the first model (model (a ) ) ,  the fractal dimension of the cluster is equal by definition 
to the fractal dimension of the diffusion on the space (d:*’= d t ’ ) ,  Since the first RW 

is homogeneously space filling, the second RW visits essentially the same space as the 
first RW, i.e. d c ’ =  d t ) .  Thus, d!2’=2 and 

p(  N )  - N O  - constant d:‘ ’  < 2. (5.6b) 

For example, when the cluster is generated in d = 1, then in model ( a ) ,  [= O i  whereas 
[= 1 in model (b) .  When the cluster is generated by a RW of infinite length ( N I  + C O )  

in d = 2, there is no distinction between the two models since S (  N )  a N and [= 0 in 
both models. Note that, as will be shown in § 7, when the cluster is generated by a 
random walk of finite length, effectively d$’>  2 from which follows [> 0. When the 
cluster is generated in space with df”>  4, then using the well known feature that the 
loops in such a cluster can be neglected upon scaling, we obtain d$) = 4 and [= 2% 
For clusters generated in space with 2 < d < 4, the value of [was calculated by Banavar 
et a1 [ 101 

In § 7 we present a numerical calculation .for clusters generated in d = 3 from which 
we obtain d c ’ =  3.45 and d:”= 1.14 which is in good agreement with the theoretical 
results of (5.7). Note also that our finding that d c )  = 3.45 = 2 +  [ is in good agreement 
with the recent E = 4 - d  expansion result [19] [= 2(1 +:E - - & E ~ ) .  

6. RW on RW scaling function 

In this section, we study the scaling form of the function ( R $ (  N ,  , N2)) ,  defined as the 
end-to-end mean square distance of an N,-step RW performed on a cluster generated 
by an NI-step RW. In d = 1, this function can be evaluated analytically by calculating 
the integral [ll] 

where g(x, NI) is the probability density for the span x of a RW cluster of N I  steps 
and (R2(x, N 2 ) )  is the mean square end-to-end distance of an N2-step RW performed 
on a segment of length x. By calculating the integral (6.1), we find that (R:(Nl, N 2 ) )  
is of the form 

(R:(Nl, N J ) =  NfN,bf(NWd (6.2) 

with a = 4, b = 1, c = 1. We assume that this scaling form applies for any dimensionality 
d with suitable values of a, b and c. In fact, the limits of f  (x  = N5/ N , )  for x + 0 and 
X + C O  are easily obtained from simple arguments. For x + q  the number of steps 
taken by the second RW is much larger than the number taken by the first. Thus, the 
span of the first RW limits ( R : )  to be proportional to NI and independent of N 2 .  For 

f For this case ( a )  it was found recently in [18] that p ( N )  -4 In N for d = 1. 
$ In the case of random walk on a Cayley tree which represents high dimension, an exact solution was 
found recently by Harris (unpublished). 
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x+O, the RW is, with overwhelming probability, far from the edges of the cluster 
generated by the first RW. Therefore, (R;) - N:/’W, independent of N, , leading to 

X a  x + o  
X + W .  

f (x)  = { X-b /C  

Substituting (6 .3)  into ( 6 . 2 )  yields 

Our earlier remarks therefore imply the relation 

c = 2 / d ,  i b d , + a  = 1. 

Introducing these identities into ( 6 . 2 )  leads to 

where 

xcc 1 
constant x >> 1. 

Thus, we see that only a single exponent 2 / d w  suffices to Lescribe limiting properties 
of (R;( NI, N2)) .  Similar arguments yield that the function (Z2( N1, NJ), the mean 
square chemical distance of an N2-step RW performed on a cluster generated by an 
N,-step RW, can be described by 2 / d f ,  as 

where 

xcc 1 
constant x >> 1. 

In the next section, we will present numerical results which support the scaling forms 
given in ( 6 . 6 ) - ( 6 . 9 ) .  

7. Dynamical properties 

In this section, we present numerical calculations of the dynamical exponents d t )  and 
d$*’ characterising the cluster generated by a RW in d = 3.  We also calculate the fracton 
dimension of the cluster db2’ both directly by measuring the probability to return to 
the origin and by using the relation d 6’’ = 2 d y ’ /  d = 2d {*I/  d z2’. The numerical 
calculations were performed using simulation techniques in which we first generate a 
RW cluster and then measure the mean square displacement in the geometrical and 
chemical metrics to obtain the dynamical exponents. 
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The clusters were generated by performing a RW on a cubic lattice. We use a 
technique in which we store only the coordinates of the RW without storing the entire 
lattice. This technique enables us to perform very long RW. However, the price we 
pay is that the time needed to perform a RW of NI steps is proportional to N :  instead 
of NI. On each cluster generated, we perform a second RW using the exact enumeration 
algorithm [20], and measure the end-to-end displacement of the second RW from its 
origin after N2 steps. The results were averaged over an ensemble of typically 500 
clusters, each consisting of NI steps. 

The exponent d f )  characterising the diffusion on the RW cluster in the geometric 
metric was calculated from the slope of the graphs in figure 3 .  In these figures, we 
plotted on a double logarithmic scale ( R 2 ( N 2 ) )  as a function of N2 and ( R 4 ( N 2 ) )  as 
a function of N 2 .  From the slopes, we obtained d t ’ = 3 . 4 5 + 0 . 1 0 .  Similarly, we 
calculated the exponent d$2)  characterising the diffusion in the chemical metric from 
the slope of the graphs in figure 4,  from which we obtained d:”= 2.28 k0.05. From 
figures 3 and 4,  we see that by increasing the number of steps NI of the RW that 
generates the cluster, the exponents d t )  and d:” decrease and converge to their 
asymptotic value. An alternative way to calculate the above exponents which yield 
similar results is to calculate the local derivative [21]  of the functions ( R 2 ( N 2 ) )  and 

The values for d f )  and d $ 2 )  can be used to calculate the fracton dimensionality 
( l ( N 2 ) ) .  

d p )  of the RW cluster generated in d = 3 using the relation [ 1 , 6 ]  

0 2 4 6 
I n  NI 

0 2 4 6 
Ln N ,  

Figure 3. Plot of the mean square displacement ( a )  and the mean fourth moment of the 
displacement ( b )  of a RW of N ,  steps performed on a cluster generated by a R W  of N ,  
steps ( N ,  = 200,400,600,800,1000,2000,3000,4000,5000,10 000 and 15 000) as a function 
of N ,  on a double logarithmic scale. From the slopes of these figures, we obtain dtf’= 
3.45 i: 0. IO. 
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2 4 6 
In N ,  

0 2 4 6 
I n  N2 

Figure 4. Plot of the mean chemical displacement ( a )  and the mean square chemical 
displacement ( b )  of a RW of N ,  steps performed on a cluster generated by a RW of N ,  
steps as a function of N ,  on a double logarithmic scale. The values of N ,  and N2 are 
given in the caption of figure 3. From the slopes of these figures, we obtain d I j 2 )  = 2.28 * 0.05. 

From (7.1), we obtain d!2’ = 2 x 213.45 = 2 x 1.29/2.28 = 1.15 * 0.02. We also calculated 
db” independently using the fact that the probability of the RW on a cluster to return 
to the origin after N2 steps scales as [l] 

Po( N 2 )  - N;d!2)’2. (7.2) 

Measuring the probability to return to the origin we obtained db2’ = 1.14* 0.02, which 
is in very good agreement with the above result. This result is inconsistent with the 
suggested extension [22,23] of the Alexander-Orbach conjecture [ 11 that d,  = $ and 
the Aharony-Stauffer conjecture [24] that d, = 2df/( d,+ 1) = $for random homogeneous 
fractals. 

The values for d c )  and d22’  can be used to calculate the exponent v’ characterising 
the relation between the chemical and geometrical metrics in the cluster, using the 
relation 

Substituting the above values for d c ’  and d;” we obtain v’= 0.67 k 0.01, which is in 
close agreement with the result obtained from static calculations of v’ described in 4 4. 
We find that this ratio depends only very weakly on N ,  and N 2 ,  in contrast to the 
dependence of v” on NI in the static calculations. This may be explained by noting 
that the effects caused by increasing NI in the dynamical measurements are cancelled 
when one uses the ratio equation (7.3). 

In § 6 a scaling function equation (6.6) was suggested to describe a RW of N2 steps 
performed on a RW cluster of NI steps. One may test this scaling form numerically. 
We divide our ensembles into two groups. The first group contains the cluster ensembles 
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in which NI is smaller than N2 ( N 2 =  1000; N 1 = 2 0 0 ,  400, 600, 800, 1000) and the 
second group contains the cluster ensembles characterised by NI 3 N2 ( N2 = 1000; 
NI = 1000, 2000, 3000, 4000, 5000, 10 000). This distinction is due to the fact that the 
diffusion exponents characterising clusters in the first group are greater than those 
characterising clusters in the second group. In figure 5 ( a )  we present a plot of 
(R:( NI,  N 2 ) ) /  NI against Nit2) /  NI for the first group using de’  = 3.4, and in figure 
5(b) we plot the same function for the second group using d e ’ =  3.35. In both figures, 
we see that all numerical data can be fitted into the same curve when using the 
corresponding value of d e ) .  This is an independent method to determine d c )  since 
only for the correct d e )  does the numerical data collapse into one curve. We also 
checked the scaling function (6.8) suggested for the chemical metric. In this case, we 
divide the ensembles into the same two groups as before. In figure 6 ( a ) ,  we present 
a plot of the function ( I , (  N I ,  N2))/  NI against N;”)/ N ,  for clusters of the first group 
using d:2’=2.33, and in figure 6 ( b )  we plot the same function for clusters which 
belong to the second group using d:*’ = 2.28. In both figures, we see a good scaling 
fitting?. 

We also tested the scaling function for the RW cluster generated in d = 2. In figures 
7 (  a )  and 7 (  b ) ,  we plot the function (R:( NI,  N 2 ) ) /  NI against N,dc)/ NI for these clusters. 
As in d = 3 ,  we divide the cluster ensembles into two groups. In figure 7 ( a )  we plot 
the function for the clusters characterised by NI N2 using d e )  = 2.6 and in figure 
7 ( b )  we plot the same function for clusters characterised by N, 3 N2 using d c )  = 2.45. 
The diffusion exponent d c ’  is seen to decrease with increasing NI. The values found 

0.2) 0.04 ~ ( b l  

0.02 0.04 
N,“;’l N ,  

Figure 5. A plot of the scaling function ( R : ( N , ,  N, ) ) /N ,  as a function of N:’dF)/NI for 
a RW of N z  steps performed on clusters generated by a RW of N, steps. In a three- 
dimensional space ( a )  for N ,  S N;lax = 1000, NI = 200 ( x), N ,  = 400 (A), NI = 600 (V), 
N, = 800 (U), NI = 1000 (+), using d, = 3.4 and in ( b )  for NI 3 ,Fax (N;“““ = 1000, 
N,=1000 (x) ,  N,=2000 (A), Nl=3000 (O) ,  Nl=4000 (U), N,=5000 (+), Nl=lOOOO 
(0)) using d c )  = 3.35. 

t Changing dl f ’  or d 2 2 )  by k0.05 does not lead to a collapse of the data into one curve. 
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0.10 I 

. s- 0.061 - 
- I  1 

0.02 

i . 
h - 

1 . -  I 
~~ 

0 0.02 0.06 
N,d:' ' i  N ,  

0.10 0 
1 1 

0.01 0.02 
N f :  '? N ,  

Figure 6. A plot of the scaling function (12(N,,  N , ) ) /N ,  as a function of N ; l d : / N 1  for 
RW of N2 steps performed on a RW of N ,  steps in a three-dimensional space. The curves 
in ( a )  are for N ,  S ,Fax (the values and symbols are as described for figure 5 )  using 
d:" = 2.33 and in ( b )  for N ,  2 NYx using d:" = 2.28. 

Figure 7. A plot of the scaling function ( R : ( N , ,  N 2 ) ) / N ,  against N:'dC'/N1 for RW 

performed on clusters generated by RW on a two-dimensional square lattice. We plot in 
( a )  the curves for the clusters characterised by N,  G NP..  (N;""" = 1000, N ,  = 200 (x ) ,  
N,  = 400 (A),  N ,  = 600 (O), NI = 800 (U), N ,  = 1000 (+)) using d c ' =  2.6. We plot in ( b )  
the curves for the clusters characterised by N,  3 N;lax ( N F a x =  1000, N ,  = 100 (x ) ,  N ,  = 
2000 (A), NI = 3000 (V), NI = 4000 (U), N ,  = 5000 (+), N,  = 6000 (0) )  using d c )  = 2.45. 
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for d g )  are in close agreement with the result obtained by Banaver et a1 [lo] from 
measuring the cluster resistivity. They found [= 0.5 for the resistivity exponent of the 
RW cluster in d = 2 .  Using the Einstein relation (5.4), we obtained d C ’ z 2 . 5 .  We 
believe that both results are due to finite-size effects, and in the limit N,+co, the 
diffusion exponent will decrease to the value d t ’ =  2.  A tendency in this direction can 
be seen from the fact that d C )  decrease monotonically as we increase N1. 

8. Discussion 

In this paper we have studied the static and dynamical properties of clusters generated 
by a random walk. This random aggregate was defined in two ways, which were shown 
to coincide when the cluster is generated in space with d 2 2.  When the cluster generated 
in space with d s 2,  it is space filling in the limit NI + a, from which it follows that 
its properties are similar to the space properties. When the cluster is generated in 
d 3 4 ,  one can use the fact that the loops in the cluster are negligible upon scaling. 
Thus, the cluster has the same properties as the cluster generated by SAW. 

The interesting case is the cluster generated in d = 3 .  On the one hand it contains 
loops in all length scales, and on the other hand the deadends are negligible. The 
importance of the loops is indicated by the fact that the cluster is characterised by 
v’ = 3 whereas for SAW clusters in d = 3, v’ = v = i. This occurs because the loops create 
new paths in the cluster. Thus the path winding decreases and v’ increases. This result 
for v’ in d = 3 and the values of v’ in d = 2 and d = 4 (see table 1)  suggest the conjecture 
that v’ = 2 / d  for RW clusters. We presented a Flory-type approximation to support this 
conjecture. However, this result has to be checked carefully in order to determine 
whether it is only a good approximation or an exact result. 

Analysing our data for calculating the dynamical exponents we see that, by increas- 
ing the number of steps of the RW that generates the cluster, its fractal dimension and 
its chemical dimension increase, while the exponents characterising the dynamic 
properties of the cluster such as d?)  and d;” decrease. Although we have used very 
long RW to generate the clusters (up to 15 000 steps in d = 3 ) ,  we still find small changes 
in the values of the exponents as N ,  increases. However, it seems that our estimations 
are very close to the asymptotic values. 

For clusters without loops, it has been proven that d i  = df  + 1, whereas in clusters 
which contain loops, d f ,  s dl + 1 ,  The difference ( d f  + 1) - d f ,  = A is a measure of the 
contribution of loops to the transport properties of the cluster. From the above 
discussion, it follows that by increasing N1 the difference A increases, from which we 
conclude that the loops in the cluster become more dominant as we increase N1. Our 
estimate for the asymptotic value is A-0 .1 ,  which is close to the value A z 0 . 1 2  in 
percolation clusters in d = 3 .  However, it is interesting to compare this result with the 
value A = 0.27 characterising loops in the d = 3 Sierpinski gasket ( s G ) .  This indicates 
that the effect of loops in the Sierpinski gasket is significantly larger than in percolation 
and RW clusters. 

Since the deadends in the RW cluster are negligible, it is interesting to compare the 
exponents characterising RW clusters with the exponents which characterise the back- 
bone of the percolation cluster in d = 3 .  These two fractals have the same fractal 
dimension ( d , =  2 )  and also the diffusion exponent characterising the RW cluster, 
d $  = 3.45 f 0.05, is close to the diffusion exponent characterising the percolation back- 
bone, d ,  = 3.2. However, the exponent v’ is different. In RW clusters i = 0.66, whereas 
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in the percolation backbone fi = 0.75. Thus the properties of the cluster in the chemical 
metric are different. 
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