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We study the structural properties of self-attracting walks in d dimensions using scaling arguments and
Monte Carlo simulations. We find evidence of a transition analogous to the � transition of polymers. Above a
critical attractive interaction uc , the walk collapses and the exponents � and k, characterizing the scaling with
time t of the mean square end-to-end distance �R2��t2� and the average number of visited sites �S��tk, are
universal and given by ��1/(d�1) and k�d/(d�1). Below uc , the walk swells and the exponents are as
with no interaction, i.e., ��1/2 for all d, k�1/2 for d�1 and k�1 for d	2. At uc , the exponents are found
to be in a different universality class.

PACS number�s�: 68.35.Rh, 05.40.�a, 64.60.Fr

In recent years different models of random walks with
memory or interaction have been studied. They can be di-
vided into static 
1� and dynamic 
2,3� models; for an over-
view we refer to the papers of Duxbury and Queiroz 
1� and
Oettinger 
2�. Most efforts concentrated on models with re-
pulsive interactions, in particular self-avoiding walks
�SAW’s�, which have been found useful for investigating
polymers in dilute solution. When an attraction term
exp(�A/T), A�0, is included, the SAW model reveals a
swelling-collapse transition at the ‘‘� point’’ T�� 
4,5�. In
contrast, the likewise challenging case of random walks with
a similar attractive interaction, but without repulsion, has
been less understood. This problem was solved only for one
dimension, while in higher dimensions the results are highly
controversial. Our numerical and analytical study of attrac-
tive random walks suggests that there also exists a swelling-
collapse transition, that is analogous to the � transition in
polymers.

We focus on the dynamic model of self-attracting walks
�SATW’s� 
3�, where a random walker jumps with probabil-
ity p�exp(nu) 
6� to a nearest neighbor site, with n�1 for
already visited sites and n�0 for not visited sites. The inter-
action parameter u is equivalent to �A/T for linear poly-
mers. For u�0, the walk is attracted to its own trajectory 
7�.
The structural behavior of the walk can be characterized by
the mean square end-to-end distance �R2(t)� and the average
number of visited sites �S(t)�. It is expected that these quan-
tities scale with time t as

�R2� t ���t2� �1a�

and

�S� t ���tk. �1b�

Earlier analyses for SATW’s in two and three dimensions
were not conclusive, and the numerical data have been con-
troversially interpreted 
3,8–10�. While Sapozhnikov 
3�
considered the possibility of the existence of a critical attrac-
tion uc �though his numerical results were not conclusive�,
Lee 
8� and Reis 
9� argued strongly against the existence of
uc , since they found � and k to decrease continuously with u.

In this Rapid Communication we present scaling argu-
ments and extensive numerical simulations for �R2� and �S�
that strongly suggest the existence of a critical attraction uc
in d	2, with three different universality classes for u�uc ,
u�uc , and u�uc . Below uc , the SATW is in the univer-
sality class of random walks, with ��1/2 and k�1. Above
uc , the SATW collapses and the exponents change to �
�1/(d�1) and k�d/(d�1). At the critical point, the ex-
ponents are �c�0.40�0.01 and kc�0.80�0.01 in d�2 and
�c�0.32�0.01 and kc�0.91�0.03 in d�3 
11�. The exis-
tence of uc is in striking similarity to the � point phenom-
enon of linear polymers 
4,5� where three different univer-
sality classes for T�� , T�� , and T�� exist.

We used Monte Carlo simulations to study �R2(t)� and
�S(t)�. Figure 1 shows representative results of �R2(t)� for
several values of u in d�3. For large values of u the curves
bend down toward the slope of 2��0.5 while for small val-
ues of u the curves bend up toward the slope of 2��1. At
some intermediate critical value uc�1.9, the slope is ap-
proximately 2�c�0.64. The mean number of visited sites
�S(t)� shows a similar behavior, with k�1 below uc , kc

FIG. 1. The mean square end-to-end distance �R2(t)� vs t up to
t�108 time steps averaged over 1000 configurations for each at-
traction u�0, 1.5, 1.9, 2.25, and 4 in d�3. Note that for large
values of u the curves bend down toward the slope of 2��1/2,
while for small values of u the curves bend up toward the slope of
2��1.
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�0.91 at uc , and k�0.75 above uc . Figure 2�a� summarizes
the asymptotic exponents � and k as functions of u in d
�3. We obtained similar results in d�2, the asymptotic val-
ues of � and k are presented in Fig. 2�b�. In Table I the values
of the exponents are summarized and compared with the
analogous known exponents for the � transition in linear
polymers.

In the following we present analytical arguments for the
exponents above criticaltity, which can explain our numeri-
cal findings. We assume that for a sufficiently strong attrac-
tion u�uc the grown clusters are compact, so that the aver-
age number of visited sites scales with the rms displacement
�R(t)���R2(t)�1/2 as

�S� t ����R� t ��d, u�uc . �2�

Comparing Eqs. �1� and �2� yields

k��d , u�uc . �3�

For sufficiently strong attraction it takes a very long time for
the walker to jump to an unvisited site. Before doing this, the
walker diffuses around on the visited sites, which are located
with equal probability on any of the cluster sites. Hence the
mean cluster growth rate is proportional to the ratio between
the number of boundary sites and the total number of the
cluster sites 
3,12�:

d�S�
dt

�
�R�d�1

�R�d �t��. �4�

Thus �S��t���1. Combining this result with Eqs. �1b� and
�3�, we obtain

FIG. 3. Scaling plots for �R2(t)�(�) and �S(t)�(�) for t�1
and 20 values of 0
u
3 in �a� d�3 and �b� d�2. For conve-
nience, the data for �S(t)� have been shifted by 105. In d�3 for
�c�0.32, kc�0.91, and uc�1.92, we find the best collapse for �
�5.0; in d�2 for �c�0.40, kc�0.80, and uc�0.88, we find the
best collapse for ��7. The straight lines represent the exponents
given in Table 1.

FIG. 2. The values of the exponents k and � vs attraction u in �a�
d�3 and �b� d�2, obtained by a least square fit of the slope of
ln�R2(t)� and ln�S(t)� vs ln t for large t, respectively �see Fig. 1�.
Shown are the results for t�106(�), t�107(�), and t�108(�).
Note that for u�uc and larger t the values of k and � approach the
theoretical predictions of Eq. �5�, marked as dashed lines. We esti-
mate the value of uc to be uc�1.92�0.03 in d�3, and uc�0.88
�0.05 in d�2 �marked by arrows�.

TABLE I. Comparison of the exponents v and k as well as the estimated values for the transition points
uc for random walks �RW� and � for SAW’s on hypercubic lattices. For values related to the � transition,
see Ref. 
5� and references therein.

RW SAW

u�uc u�uc u�uc 1/T�1/� 1/T�1/� 1/T�1/�
d�2 v 1/2 0.40�0.01 1/3 3/4 4/7 1/2

k 1 0.80�0.01 2/3 1 1 1
uc�0.88�0.05 1/�0�0.65�0.03

d�3 v 1/2 0.32�0.01 1/4 0.59 1/2 1/3
k 1 0.91�0.03 3/4 1 1 1

uc�1.92�0.03 1/�0�0.5�0.03
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��
1

d�1
�5a�

and

k�
d

d�1
�5b�

for u�uc .
Because of universality we assume that these results,

which are in agreement with the exact values ��1/2 and k
�1/2 in d�1 
10�, and are supported by our extensive
Monte Carlo simulations in d�2 and 3, are valid for all u
�uc . Indeed, Fig. 2 suggests that the predictions for u�uc

Eq. �5�� are approached asymptotically. We note that in d
�2 the relation k��d also holds for u
uc , while in d
�3 the numerical results yield k��d for u�uc . Since the
mass of the generated clusters scales like M�S�Rk/�, k/�
corresponds to the fractal dimension d f of the cluster. In d
�2 the clusters are compact for all u as k/��d f�d . In d
�3 they are compact for u�uc , while for u�uc the fractal
dimension of clusters generated by simple random walks d f
�2�d is obtained. At the criticality, we find d f�2.84
�0.25, but we cannot rule out the possibility that d f�d .

To understand the behavior in the critical regime we sug-
gest the following scaling approach. Guided by Fig. 1, we
assume that there exists a crossover time t� below which the
exponent � is close to �c and above which � approaches 1/2
for u�uc and 1/(d�1) for u�uc . This suggests the scaling
relations

R� t ��t�c f �� t/t�� �6a�

and

S� t ��tkcg�� t/t��, �6b�

where

t���u�uc���. �6c�

The plus sign refers to u�uc , the minus sign to u�uc , and
the exponent � has to be determined numerically. As t� is
assumed to be the only relevant time scale, the scaling func-
tions bridge the short time and the long time regime. To
match both regimes, we require that f �(x)�const for x	1
(t	t�), and f �(x)�x1/(d�1)��c, f �(x)�x1/2��c for x�1.
Analogous results are expected for g�(x), with g�(x)
�const for x	1, and g�(x)�xd/(d�1)�kc, g�(x)�x1�kc for
x�1.

To test the scaling theory and to determine the exponent
�, we plotted �R2(t)�/t�

2�c and �S(t)�/t�
kc as functions of t/t�

for several values of � in d�2 and 3. We obtained the best
data collapse for ��5.0�0.5 in d�3 and ��7�1 in d
�2, which are shown in Fig. 3�a� and 3�b�, respectively. The
excellent data collapse strongly supports the above scaling
assumptions.
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