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We study ��(MB ,r)�, the average conductance of the backbone, defined by two points separated by Eu-
clidean distance r, of mass MB on two-dimensional percolation clusters at the percolation threshold. We find
that with increasing MB and for fixed r ,��(MB ,r)� asymptotically decreases to a constant, in contrast with the
behavior of homogeneous systems and nonrandom fractals �such as the Sierpinski gasket� in which conduc-
tance increases with increasing MB . We explain this behavior by studying the distribution of shortest paths
between the two points on clusters with a given MB . We also study the dependence of conductance on MB

above the percolation threshold and find that �i� slightly above pc , the conductance first decreases and then
increases with increasing MB and �ii� further above pc , the conductance increases monotonically for all values
of MB , as is the case for homogeneous systems.

PACS number�s�: 64.60.Ak, 64.60.Fr, 05.45.Df

I. INTRODUCTION

There has been considerable study of the bond percolation
cluster considered as a random-resistor network, with each
occupied bond having unit resistance and nonoccupied bonds
having infinite resistance �1–3�. In two dimensions, the con-
figuration studied is typically an L�L lattice and the con-
ductance is measured between two opposite sides which are
assumed to have infinite conductance �4–16�. The backbone
of the cluster is then defined as the set of bonds that are
connected to the two sides having infinite conductance
through paths that have no common bond.

At the percolation threshold, the backbone mass scales as
�MB�	LdB with dB�1.6432�0.0008 �17� and in this ‘‘bus
bar’’ geometry is strongly correlated with L. The average
conductance of the backbone as a function of L has been
studied extensively and has been found to scale as ���
	L�
̃ with 
̃�0.9826�0.0008 �17�.

Recently, the distribution of masses of backbones defined
by two points, i.e., backbones defined as the set of those
bonds that are connected by paths having no common bonds
to two points separated by distance r within an L�L lattice,
has been studied �18�. This geometry has particular relevance
to the oil industry where the oil field is represented by the
percolation cluster and the two points represent the location
of injection and production wells. One finds that when r
�L , there is a very broad distribution of backbone masses
for a given r. Figure 1 illustrates some typical percolation
clusters and their backbones defined in this configuration.
Because of the broad distribution of backbone masses we
have the opportunity to study the conductance between these
two points separated by a fixed distance r as a function of the

mass of the backbone defined by these points.
One might expect that, for fixed r, the average conduc-

tance would increase with increasing backbone mass be-
cause there could be more paths through which current can
flow. In fact, we find that the average conductance decreases
monotonically with increasing backbone size, in contrast
with the behavior of homogeneous systems and nonrandom
fractals in which conductance increases. We explain our
finding by first noting that the conductance is strongly cor-
related with the shortest path between the two points, and
then studying the distribution of shortest paths along the
backbone between the two points for a given MB . This
analysis extends recent studies of the distribution of shortest
paths where no restriction on MB is placed �19–22�.

II. SIMULATIONS

Our system is a two-dimensional square lattice of side L
�1000 with points A and B defined as A�(L�r/2, 500),B
�(L�r/2, 500). For each realization of bond percolation on
this lattice, if there is a path of connected bonds between A
and B, we calculate �i� the length of the shortest path be-
tween A and B, �ii� the size of the backbone defined by A and
B, and �iii� the total conductance between A and B. We per-
form 100 000 realizations at the percolation threshold, pc
�0.5, for each of 8 values of r �1, 2, 4, 8, 16, 32, 64, and
128�. We bin these results based on the value of the back-
bone mass, MB , by combining results for all realizations
with 2n�MB�2n�1 and choosing the center of each bin as
the value of MB .

In Fig. 2�a�, we plot the simulation results for the average
conductance ��(MB ,r)� and find that the conductance, in
fact, decreases with increasing MB . The decrease is seen
more clearly in Fig. 2�b�, in which we plot scaled values as
discussed below.

III. SIERPINSKI GASKET

In nonfractal systems, the conductance increases as the
mass of the conductor increases. We next consider the aver-
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age conductance on the Sierpinski gasket, a nonrandom frac-
tal, the first three generations of which are illustrated in Figs.
3�a�–3�c�. Because the Sierpinksi gasket is not translation-
ally invariant, the analog of the average conductivity be-
tween two points in the percolation cluster is the conductiv-
ity averaged over all pairs of points separated by distance r.
At each successive generation, there are two types of pairs:
�i� pairs which correspond to pairs in the previous generation
�e.g., A and B� and �ii� pairs which do not correspond to
pairs in the previous generation �e.g., D and E�. It is obvious
that as we move from one generation to the next, the con-
ductance between pairs of type �i� increases because there
are more paths between the points than in the previous gen-
eration. On the other hand, the conductance between the
pairs of type �ii� are lower on average than between the pairs
present in the previous generation because on average the
shortest path between the two points is longer than between
the pairs in the previous generation. However, for any given
r, the shortest path between any two points has a fixed upper
bound independent of the generation. Due to this bound on
the shortest path, the average conductivity increases with
succeeding generations. This is shown in Fig. 3�d� which
shows the average conductivity calculated exactly for gen-
erations 1 to 6 for r�1, 2 and 4.

IV. SHORTEST PATH DISTRIBUTION

In order to understand why the average conductance of
the percolation backbone decreases with increasing MB , we
must �i� recognize that the conductance is strongly correlated
with the shortest path �23� between the two points and �ii�
study P(l �MB ,r), the distribution of shortest paths between
the two points for a given backbone mass. Hence we next
create the P(l �MB ,r) probability distribution, binning our

results logarithmically by forming the average over samples
centered at log2l .

Figure 4�a� shows the simulation results for P(l �MB ,r)
for r�1 for various backbone masses. The plots collapse,
the only difference in the plots being the values of the upper
cutoffs due to the finite backbone size. Figure 1 illustrates
how the size of the backbone constrains the possible values
of the shortest path. For all values of MB , a section of each
plot in Fig. 4�a� exhibits power law behavior. In Fig. 4�b�,
we show the distributions P(l �MB ,r) for different r and a
given MB . In Fig. 4�c� we see that when scaled with rdmin the
plots collapse, so we can write P(l �MB ,r) in the scaling
form

P� l �MB ,r �	
1

rdmin
� l

rdmin
� ��

. �1�

An expression for � can be found by recognizing that we can
write the well-studied distribution P(l �r), the probability
that the shortest path between two points separated by Eu-
clidean distance r is l , independent of MB , as

P� l �r ���
c l

�

P� l �MB ,r �P�MB�r �dMB , �2�

where �i� P(MB�r) is the distribution of backbone masses
given distance r between the points which determine the
backbone and �ii� c l is the lower cutoff on MB given l .
P(MB�r) has the form �18�

P�MB�r �	
1

rdB
� MB

rdB
� �B

, �r�L� , �3�

where dB is the backbone fractal dimension and


