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We study structural and dynamical properties of the backbone of the incipient infinite cluster for site
percolation in two and three dimensions. We calculate the average mass of the backbone in chemical l space,

�MB(l )��l d l
B
, where d l

B is the chemical dimension. We find d l
B�1.45�0.01 in d�2 and d l

B�1.36�0.02 in
d�3. The fractal dimension in r space d f

B is obtained from the relation d f
B�d l

Bdmin , d f
B�1.64�0.02 in

d�2 and d f
B�1.87 � 0.03 in d�3, where dmin is the fractal dimension of the shortest path. The distribution

function �B(r ,l ) is determined, giving the probability of finding two backbone sites at the spatial distance
r connected by the shortest path of length l , as well as the related quantity l min

B (r ,Nav), giving the length of
the minimal shortest path for two backbone sites at distance r as a function of the number Nav of configurations
considered. Regarding dynamical properties, we study the distribution functions PB(l ,t) and PB(r ,t) of
random walks on the backbone, giving the probability of finding a random walker after t time steps, at a
chemical distance l , and Euclidean distance r from its starting point, respectively, and their first moments

�l B(t)��t1/dw
Bl

and �rB(t)��t1/dw
B
, from which the fractal dimensions of the random walk dw

Bl and dw
B are

estimated. We find dw
Bl �2.28�0.03 and dw

B�2.62�0.03 in d�2 as well as dw
Bl �2.25�0.03 and

dw
B�3.09�0.03 in d�3. �S1063-651X�97�00508-4	

PACS number�s�: 05.20.�y, 05.40.�j, 64.60.�i, 66.30.�h

I. INTRODUCTION

Percolation represents a useful model for a variety of sys-
tems in many fields of science displaying both structural dis-
order and self-similarity, i.e., fractal behavior, within some
range of length scales �1–3	. In many circumstances, a de-
tailed knowledge of the internal structure of percolation clus-
ters is required. In particular, for studying transport processes
near the percolation threshold pc , a crucial role is played by
the complex topology of the available conducting paths
�4–7	.

It is known that at pc , the incipient infinite cluster exhib-
its a variety of self-similar substructures and consequently a
rich scenario of transport properties �4–7	. A prominent role
is played by the backbone of the cluster, defined as the sub-
set of cluster sites carrying the current when a voltage dif-
ference is applied between two sites �see �8	 and references
therein�. Thus, the backbone structure solely determines the
conductivity of the whole percolation network between both
sites. The backbone of a percolation cluster is also useful as
a model of a porous medium containing long polymer chains
�9	. So far, much is known about structural and dynamical
properties of percolation clusters, but little is known about
the corresponding properties of the backbone.

In this paper, we report a detailed study of structural and
dynamical properties of the backbone of the incipient infinite
cluster at pc in two and three dimensions. Actually, many of
the exponents characterizing the structural and dynamical
properties of the backbone are presently poorly known, in
particular, in three dimensions. To obtain accurate results,
we study the backbone in topological or chemical space
�3,5	. The topological or chemical distance l between two
points on the cluster is defined as the length of the shortest
path connecting them via nearest-neighbor cluster sites.

Since our clusters are generated in chemical space �see be-
low�, this is the natural metric for measuring critical expo-
nents. To this end, we first calculate the fractal dimension of
the backbone in chemical space (l space� d l

B , and obtain the
fractal dimension in Euclidean space (r space� d f

B , from the
relation d f

B�d l
B dmin , where dmin is the fractal dimension of

the shortest path �3,5	. We next study the distribution func-
tion �B(r ,l ), giving the probability that two backbone sites
at distance r from each other are connected by a shortest path
of length l , as well as the related quantity l min

B (r ,Nav), giv-
ing the length of the minimal shortest path for backbone sites
at distance r from each other as a function of the number
Nav of configurations considered. To the best of our knowl-
edge, these quantities have not been studied so far for the
backbone. It is therefore interesting to calculate �B(r ,l )
and compare it with the corresponding structural function
�(r ,l ) for the whole cluster, which is now known quite
accurately �for a recent work see Ref. �10	�. From the addi-
tional information obtained by studying �B(r ,l ), we expect
to better understand the structural properties of the whole
cluster as well.

Regarding dynamical properties, we consider random
walks on the backbone and calculate the mean square dis-
placements of the walker as a function of time, in both l and
r spaces. Finally, we consider the corresponding distribution
functions PB(l ,t) and PB(r ,t), giving the probability den-
sity that the walker is, at time t , at the distance l and r ,
respectively, from its starting point at t�0. Following the
study of P(r ,t) for the whole cluster �11	, we also discuss
the question of the dependence of PB(r ,t) on the number
Nav of backbone configurations taken into account in the
average.

The paper is organized as follows. In Sec. II, the fractal
dimensions in chemical and Euclidean space are determined,
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together with the distribution function of the Euclidean dis-
tance r between two backbone sites as a function of their
chemical distance l , and the scaling behavior of the shortest
path. In Sec. III, we study random walks on the backbone,
both in chemical and Euclidean space, and determine the
corresponding distribution functions as well as their first mo-
ments. Finally, in Sec. IV, we summarize our results.

II. STRUCTURAL PROPERTIES

We generate large percolation clusters at criticality with
the well-known Leath algorithm �12	 on square and simple
cubic lattices. The Leath algorithm generates in every step
t the whole set of sites having a chemical distance l �t from
the seed, i.e., in the first step all sites with l �1 are gener-
ated, in the second step all sites with l �2 and so on. The
corresponding backbone is obtained using an improved ver-
sion of the ‘‘burning’’ algorithm �8	 described in detail in
Appendix A. To perform the averages, we grow clusters up
to a maximum chemical distance l max from the seed, with
l max�2000 in two dimensions and l max�1000 in three di-
mensions. To minimize the computer memory needed for the
calculations, we estimate the minimum lattice sizes L re-
quired to generate such large clusters from a relation given in
�11	 �see Appendix B for details�. We use L�2801 in
d�2 and L�685 in d�3, which in both cases are much
smaller than L��2l max�1. Nevertheless, none of the gen-
erated clusters reached the lattice boundaries. This more ef-
ficient use of computer memory, as well as the improved
burning algorithm, enables us to study much larger systems
than before, leading to more accurate estimates for the criti-

cal exponents and the fractal dimensions.

A. Fractal dimensions

Because the clusters are generated in chemical space, no
boundary effects occur when looking at properties that de-
pend on the chemical distance l , in contrast to Euclidean
space (r space�, where strong boundary effects are present.
Thus, the fractal dimension d f

B of the backbone, defined by

�MB(r)��rd f
B
, is not determined directly, but instead we

study the mass-distance relation in l space according to

�MB� l ���l d l
B
, �1�

where d l
B is the fractal dimension of the backbone in chemi-

cal space. The two fractal dimensions are related by
d f

B�d l
Bdmin , where dmin is the fractal dimension of the short-

est path and describes the scaling between r and l , i.e.,
�l (r)��rdmin, with dmin�1.130�0.004 in d�2 �13,14	 and
dmin�1.374�0.004 in d�3 �15	.

The results for d l
B are displayed in Fig. 1 for d�2, and in

Fig. 2 for d�3, where the successive slopes of lnMB(l ) vs
lnl as a function of 1/l are shown. The open symbols cor-
respond to the case in which the backbone is defined be-
tween the seed and one randomly chosen site on the last
grown chemical shell. Clearly, in this case the value of d l

B

tends to decrease when l →l max , since close to l max the
backbone grows nearly linear. This provides us with a nu-
merical lower bound for the actual value of d l

B . A numerical
upper bound can be obtained by defining the backbone be-
tween the seed and all sites on the last grown chemical shell.

FIG. 1. Plot of the chemical dimension d l
B as a function of

1/l for d�2 �obtained from successive slopes of lnMB(l ) vs
lnl ]. The backbone is determined using one site on the last grown
chemical shell �open symbols� and all sites on the last grown
chemical shell �full symbols�. The plots are based on averages of
MB(l ) over 80 000 cluster configurations, with a maximum chemi-
cal distance l max�2000 �open and full circles� and l max�400
�open and full triangles�. The results are summarized in Table I.

FIG. 2. Plot of the chemical dimension d l
B as a function of

1/l for d�3 �obtained from successive slopes of lnMB(l ) vs
lnl ]. The backbone is determined using one site on the last grown
chemical shell �open symbols� and all sites on the last grown
chemical shell �full symbols�. The plots are based on averages of
MB(l ) over 80 000 cluster configurations, with a maximum chemi-
cal distance l max�1000 �open and full circles� and l max�200
�open and full triangles�. The results are summarized in Table I.
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The full symbols correspond to this case, where now the
value of d l

B tends to increase when l →l max , since close to
l max the so defined backbone coincides with the cluster it-
self. Our estimated asymptotic values, obtained by fitting
two straight lines for both the lower and upper sets of points,
and extrapolating 1/l →0, are reported in Table I. The re-
ported exponents d l

B are the averages of these extrapolations,
while the extrapolated values allow us to estimate the error
bars. The obtained values are consistent with previously pub-
lished results, see, e.g., �8	.

B. Distribution functions

Next, we consider the structural distribution function
�B(r ,l ), giving the probability that two backbone sites con-
nected by a shortest path of length l are at spatial distance
r from each other. We assume for �B(r ,l ) a similar scaling
form as for the entire cluster �see e.g., �5,10,14	�, i.e.,

�B�r ,l ��
1

l 
̃ d
f B�x �, �2�

with the scaling variable x�r/l 
̃ and 
̃ �1/dmin , and
�B(r ,l )�0 for l �l min

B (r ,Nav). The quantity l min
B (r ,Nav)

is discussed in detail in Sec. III. As for the entire cluster �10	,
we expect that the scaling function f B(x) cannot be fitted by
a simple product of a power law and an exponential function,
but displays a more general form

f B�x ��� c1
Bxg1

B
for x�1,

c2
Bxg2

B
exp��aBx�	 for x�1,

�3�

with two different exponents g1
B and g2

B in the regimes

r/l 
̃�1 and r/l 
̃�1, respectively, and ��(1� 
̃ )�1. The
normalization is given in the embedding d-dimensional
space by 
rd�1�B(r ,l )dr�1. For convenience, we deter-
mine numerically the distribution function �̃B(r ,l ), related
to �B(r ,l ) by

�̃B�r ,l ��rd�1�B�r ,l ��
1

r � r

l 
̃ � d

f B�x �, �4�

which is normalized according to 
�̃B(r ,l )dr�1. The
function r�̃B(r ,l ) vs r/l 
̃ is shown in Fig. 3 for d�2 and

d�3, from which the exponents g̃ 1
B and g̃ 2

B are determined,

which are related to g1
B and g2

B by g̃ 1
B�g1

B�d and

g̃ 2
B�g2

B�d , respectively. The results for the fitting param-
eters are reported in Table II. We note that the corresponding
distribution function �B

(all)(r ,l ) for the backbone defined

TABLE II. The fitting parameters describing the scaling func-
tion f B(x) �see Fig. 3� for the backbone of percolation clusters at

criticality, where f B(x)�c1
Bxg1

B
for x�1 �continuous line� and

f B(x)�c2
Bxg2

B
exp��aBx�	 for x�1 �dashed line�, with

��(1� 
̃ )�1. The measured exponents g̃ 1
B and g̃ 2

B are related to

g1
B und g2

B by g̃ 1
B�g1

B�d and g̃ 2
B�g2

B�d .

Structural exponents Lattice dimension
and prefactors d�2 d�3 d�6

g1
B 1.30�0.20 1.02�0.20 0

g2
B 1.97�0.20 0.59�0.20 0

g̃ 1
B 3.30�0.20 4.02�0.20

g̃ 2
B 3.97�0.20 3.59�0.20

c1
B 1.50�0.20 4.63�0.20

c2
B 3.10�0.20 3.43�0.20

aB 0.62�0.20 0.94�0.20

TABLE I. The chemical dimension d l
B of the backbone obtained

from Figs. 1 and 2. The fractal dimensions d f
B are calculated from

the relation d f
B�d l

Bdmin , with dmin�1.130�0.004 (d�2) �13,14	
and dmin�1.374 � 0.004 (d�3) �15	.

Fractal dimension Lattice dimension
d�2 d�3 d�6

d l
B 1.45�0.01 1.36�0.02 1

d f
B 1.64�0.02 1.87�0.03 2

FIG. 3. Scaling plots of the distribution function for percolation

backbones r�̃B(r ,l ) vs r/l 
̃ , for �a� d�2, l �1000 �circle�,
l �1400 �full diamond�, and l �1800 �square�, and �b� d�3,
l �400 �circle�, l �600 �full diamond�, and l �800 �square�. In
both cases, the plots are based on averages over 80 000 cluster
configurations, with a maximum chemical distance l max�2000 in
d�2 and l max�1000 in d�3. The lines represent our fits for

r/l 
̃�1 �continuous line� and r/l 
̃�1 �dashed line�. The fitting
parameters are summarized in Table II.
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between the seed and all sites on the last grown chemical
shell is identical to �B(r ,l ) within the current numerical
accuracy.

C. Minimal shortest path

We discuss next the behavior of the minimal shortest path
l min

B (r ,Nav) determining the values of l at which
�B(r ,l )�0. This quantity plays a very important role for
determining transport properties: The fact that the minimal
shortest path l min

B (r ,Nav) shows an explicit dependence on
the number of configurations Nav considered has important
consequences for dynamical properties as, e.g., random
walks, fractons or electronic wave functions �11	. In this pa-
per we restrict ourselves to the discussion of the effect on
random walks, see Sec. III.

We expect a scaling behavior of l min
B (r ,Nav), as a func-

tion of the Euclidean distance r and the number of configu-
rations Nav considered, similar to that on the entire cluster
�11	, i.e.,

l min
B �r ,Nav��� r for r�rc

B�Nav�,

�min
B �Nav�r

dmin for r	rc
B�Nav�.

�5�

Notice that below the crossover distance rc
B(Nav), the mini-

mal chemical distance l min
B (r ,Nav) is independent of the

number of configurations Nav considered, while for
r	rc

B(Nav) it depends explicitly on Nav . To obtain the cross-
over distance rc

B(Nav) analytically, we consider the probabil-
ity WNav

B to find a shortest path of length l �r�rc
B within

Nav backbone configurations, where WNav

B �Nav
�1 holds. For

the entire cluster the relation WNav
�zpc

rc was used in �11	,

where z is the coordination number of the lattice. For the
backbone we expect a similar relation WNav

B �zeffpc
rc , where

z is replaced by an effective coordination number zeff , which
incorporates the probability that the considered site belongs
to the backbone. Since the backbone is more dilute than the
whole cluster, we have in average a smaller connectivity, i.e.,
zeff�z . This yields

rc
B�Nav��

lnzeff�lnNav

ln�1/pc�
, �6�

where zeff is not known analytically and must be determined
a posteriori.

To determine �min
B (Nav), we assume, as for the entire

cluster, the scaling behavior l min
B (r ,Nav)�rc

B(Nav)gB�r/
rc

B(Nav)	 . To fulfill Eq. �5�, the scaling function gB(x) must
behave as gB(x)�x when x�1 and gB(x)�xdmin when
x	1. This yields

�min
B �Nav���B�rc

B�Nav�	
1�dmin, �7�

where the prefactor �B remains to be determined. Results for
l min

B (r ,Nav)/rc
B(Nav) versus r/rc

B(Nav) for different values of
Nav are shown in Fig. 4 for d�2 and d�3. The shown lines
indicate the predicted exponents, 1 for r/rc

B(Nav)�1 and
dmin for r/rc

B(Nav)	1. The values of zeff are determined such
that the best data collapse is achieved, and �B�x




1�dmin,

where x
 is the value of x�r/rc
B(Nav) at the crossover. The

results are reported in Table III. We note that the correspond-
ing structural quantity l min

B,(all)(r ,Nav) for the backbone de-
fined between the seed and all sites on the last grown chemi-
cal shell is identical to l min

B (r ,Nav) within the current
numerical accurancy.

III. DYNAMICAL PROPERTIES

In the following, we consider dynamical properties of the
backbone by studying random walks, both in Euclidean and
chemical space. To this end, we employ the exact enumera-
tion method �5	. For the present purposes, clusters are grown
on square and simple cubic lattices up to a maximum chemi-
cal distance l max�1000 in d�2 and l max�400 in d�3.
Clusters which have not reached the chemical shell l max are

FIG. 4. Scaling plots of the minimum chemical distance
l min

B (r ,Nav)/rc(Nav) vs r/rc(Nav), for �a� d�2 and �b� d�3, both
for Nav�1 �circle�, Nav�4 �full diamond�, Nav�20 �square�,
Nav�100 �full triangle�, and Nav�750 �star�. In both cases, the
plots are based on a total ensemble of 80 000 cluster configurations,
with a maximum chemical distance l max�2000 in d�2 and
l max�1000 in d�3. The lines represent the predicted exponent 1
for r/rc(Nav)�1 �continuous line� and dmin for r/rc(Nav)	1
�dashed line�. The results are summarized in Table III.

TABLE III. Structural constants, defined in Eqs. �6� and �7� and
obtained from the data collapse shown in Fig. 4.

Structural constant Lattice dimension
d�2 d�3 d�6

zeff 2.1�0.2 1.2�0.2 1
�B 1.02�0.05 0.95�0.07
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discarded. Again, the lattice sizes are estimated with the
method discussed in Appendix B. In our simulations, we
consider random walks of tmax�4000 and tmax�1600 time
steps in d�2 and d�3, respectively.

A. Mean displacements

The mean displacements after t time steps in chemical
and Euclidean metric are given by

�l B� t ���t1/dw
Bl

�8�

and

�rB� t ���t1/dw
B
, �9�

from which the fractal dimensions of the random walk dw
Bl

and dw
B are determined. The results for dw

Bl and dw
B are dis-

played in Fig. 5 for d�2 and Fig. 6 for d�3, where the
successive slopes of lnl B(t) and lnrB(t) vs lnt as a function
of 1/t are shown. The open circles correspond to the case in
which the backbone is defined between the seed and one
randomly chosen site on the chemical shell l max , and the
full circles to the case in which the backbone is defined be-
tween the seed and all sites on the chemical shell l max . Both
sets of points coincide as long as the random walker mainly
explores regions of the backbone where both algorithms
yield similar structures. This provides us with numerical up-
per and lower bounds for the actual values of dw

Bl and dw
B .

Our estimated asymptotic values, obtained by fitting two
straight lines for both the lower and upper sets of points, and

extrapolating 1/t→0, are reported in Table IV. The reported
exponents dw

Bl and dw
B are the averages of these extrapola-

tions, while the extrapolated values allow us to estimate the
error bars. The obtained values are consistent with previ-
ously published results, see, e.g., �16	.

B. Distribution functions

The probability of a random walker to be at chemical
distance l and Euclidean distance r after t time steps is
given by the distribution functions PB(l ,t) and PB(r ,t), re-
spectively. The mean displacement �l B(t)� and �rB(t)� dis-
cussed above are the first moments of these distributions. For
the distribution function in chemical space we expect a form
similar to that for the entire cluster �5,6	, i.e.,

PB� l ,t �

PB�0,t �
�exp��� l

� l
B� vB� , �10�

FIG. 5. Plot of the fractal dimensions dw
B and dw

Bl of the random
walk as a function of 1/t for d�2 �obtained from successive slopes
of lnrB(t) and lnl B(t) vs lnt, respectively	. The backbone is deter-
mined using one site on the chemical shell l max �open circles� and
all sites on the chemical shell l max �full circles�. The plots are
based on averages of rB(t) and l B(t) over 10 000 cluster configu-
rations, with a maximum chemical distance l max�1000 and
tmax�4000 time steps. The results are summarized in Table IV.

FIG. 6. Plot of the fractal dimensions dw
B and dw

Bl of the random
walk as a function of 1/t for d�3 �obtained from successive slopes
of lnrB(t) and lnl B(t) vs lnt, respectively	. The backbone is deter-
mined using one site on the chemical shell l max �open circles� and
all sites on the chemical shell l max �full circles�. The plots are
based on averages of rB(t) and l B(t) over 12 000 cluster configu-
rations, with a maximum chemical distance l max�400 and
tmax�1600 time steps. The results are summarized in Table IV.

TABLE IV. Summary of the results for the fractal dimensions
dw

Bl and dw
B of the random walk on the backbone �see Figs. 5 and 6�.

Diffusion exponent Lattice dimension
d�2 d�3 d�6

dw
Bl 2.28�0.03 2.25�0.03 2

dw
B 2.62�0.03 3.09�0.03 4
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with � l
B��l B(t)� and PB(0,t)��� l

B	�d l
B
, where �l B(t)� is

the mean displacement in chemical metric defined above.

The distribution is normalized as 
 l d l
B

�1PB(l ,t)dl �1. To
obtain the exponent vB , we plot �ln�PB(l ,t)/PB(0,t)	 vs
l /� l

B in double logarithmic form in Fig. 7 for d�2 and
d�3. Similar to the entire cluster, we find vB�dw

Bl for
l /� l

B�1 and vB�dw
Bl /(dw

Bl �1) for l /� l
B	1.

To analytically calculate the distribution function
PB(r ,t;Nav)��PB(r ,t)�Nav

for a random walker in Euclidean

space, averaged over Nav configurations, we follow Refs.
�6,11	 and write PB(r ,t;Nav) as a convolution integral of the
distribution of a random walker in l space, PB(l ,t), and the
structural function �B(r ,l ), i.e.,

PB�r ,t;Nav��rd�d f
B�

l min
B

�r ,Nav�

�

l d l
B

�1�B�r ,l �PB� l ,t �dl ,

�11�

where l min
B (r ,Nav) is the length of the minimal shortest path

discussed in Sec. II. The dependence of the lower integration
limit l min

B (r ,Nav) on the number of configurations Nav con-
sidered introduces a second crossover distance r
(Nav) and
causes a dependence of PB(r ,t;Nav) on Nav . The distribution
PB(r ,t;Nav) is normalized on the backbone by


rd f
B

�1PB(r ,t;Nav)dr�1. Following the procedure de-
scribed in �11,17	, we obtain, in full analogy to the results
for percolation clusters,

PB�r ,t;Nav�

PB�0,t;Nav�
��

1�c� r

�r
B� g1

B
�d�d f

B

for r�r1
B ,

exp��c�� r

�r
B� dw

B/�dw
B

�1 �� for r1
B�r�r


B �Nav�,

exp��c��rc
B�Nav�	

dw
Bl

�dmin�1 �/�dw
Bl

�1 �� r

�r
B� dw

B/�dw
Bl

�1 �� for r	r

B �Nav�

�12�

FIG. 7. Scaling plots of the distribution function
�ln�PB(l ,t)/PB(0,t)	 vs l /� l

B , for �a� d�2, t�1000 �circle�,
t�2000 �full diamond�, and t�4000 �square�, and �b� d�3,
t�400 �circle�, t�800 �full diamond�, and t�1600 �square�, with
� l

B��l B(t)�. In both cases, the plots are based on averages over
more than 10 000 cluster configurations, with a maximum chemical
distance l max�1000 in d�2 and l max�400 in d�3. The lines
represent the predicted exponents dw

Bl for l /� l
B�1 �continuous

line� and dw
Bl /(dw

Bl �1) for l /� l
B	1 �dashed line�.

FIG. 8. Scaling plots of the distribution function
�ln�PB(r ,t;Nav)/PB(0,t;Nav)	 vs r/�r

B , for �a� d�2, t�1000 and
�b� d�3, t�400, both for Nav�1, i.e., typical average �circle�,
Nav�200 �full diamond�, and Nav�10 000 �square�, with
�r

B��rB(t)�. In both cases, the plots are based on a total ensemble
of more than 10 000 cluster configurations, with a maximum chemi-
cal distance l max�1000 and l max�400 in d�2 and d�3, respec-
tively. The lines represent the predicted exponents g1

B�d�d f
B for

r�r1
B �continuous line�, dw

B/(dw
B�1) for r1

B�r�r
(Nav) �dashed
line�, and dw

B/(dw
Bl �1) for r	r
(Nav) �dashed-dotted line�.
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�for the regime r�r1
B see also �18,19	�. The crossover dis-

tances r1
B and r


B (Nav) are given by

r1
B��r

B� �g2
B�d ��dmin�1 �

aBdmin
� �dw

B
�1 �/dw

B

�13�

and

rx
B�Nav���r

B�
B
�1/[dw

B
�dmin�1 �/�dw

B
�1 �]

�rc
B�Nav�	

�dw
B

�1 �/dw
B
,
�14�

with �r
B��rB(t)�, where �rB(t)� is the mean displacement in

the Euclidean space defined above. Hence, for large dis-
tances r , the relevant length scale increases logarithmically
with the number Nav of configurations. Below r


B (Nav),
PB(r ,t)�PB(r ,t;Nav) is independent of Nav , while above
r


B (Nav), the self-averaging hypothesis breaks down and
PB(r ,t;Nav) depends logarithmically on Nav . The so-called
typical average �PB(r ,t)� typ is equivalent to the case
Nav�1, i.e., �PB(r ,t)� typ�PB(r ,t;1).

To verify our predictions given in Eqs. �12�–�14�, we plot
�ln�PB(r ,t;Nav)/PB(0,t;Nav)	 vs r/�r

B in double logarithmic
form in Fig. 8 for d�2 and d�3. The shown lines indicate
our predicted exponents g1

B�d�d f
B for r�r1

B , dw
B/(dw

B�1)
for r1

B�r�r

B (Nav), and dw

B/(dw
Bl �1) for r	r
(Nav). The

numerical data are well described by our analytical results.

IV. SUMMARY

In this paper we present extensive numerical simulations
concerning the structural and dynamical properties of the
backbone of percolation clusters at criticality in two and
three dimensions. An improved burning algorithm, intro-
duced in this work, enables us to study much larger systems
than before, therefore leading to improved estimates for the
fractal dimensions of the backbone d l

B and d f
B , as well as for

the corresponding fractal dimensions of the random walk
dw

Bl and dw
B . We also calculate the structural distribution

function �B(r ,l ), the length of the minimal shortest path
l min

B (r ,Nav), and the distribution function of a random
walker in chemical and Euclidean space PB(l ,t) and
PB(r ,t;Nav), respectively.

We note that from d f
B and dw

B the conductivity exponent

�̃ , which describes the scaling behavior of the conductivity
� of a percolation system near criticality as a function of the
system size L , i.e., ��L��̃, can be calculated by
�̃�dw

B�d f
B�d�2 �5,6	. Our results for d f

B and dw
B yield

�̃�0.98�0.03 in d�2 and �̃�2.22�0.03 in d�3. These
results are in very good agreement with the values
�̃�0.97�0.01 and �̃�2.2�0.1 for d�2 and d�3, respec-
tively, obtained from other simulations �3	.
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APPENDIX A: IMPROVED ‘‘BURNING’’ ALGORITHM

The backbones studied in this paper are generated using
an improved version of the burning algorithm. The basic
burning algorithm was first introduced in �8	. We review the
above algorithm and consider its improvement.

To use the burning algorithm, one has to find the chemical
distances l to the starting site of the backbone and the sites
where loops of cluster sites relative to the starting site close
up �loop sites�. Using the Leath method, the sites of the
cluster are generated with increasing chemical distance l

from the seed. Therefore it is convenient to define the back-
bone between the seed �starting site� and one randomly cho-
sen site on the last grown chemical shell of the cluster �end
site� �20	. In such a case the chemical distances l to the
starting site are trivially identical to those obtained by Leath
growth. By choosing the end site of the backbone on the last
grown chemical shell we ensure that no sites with a larger
chemical distance l to the starting site than the end site
exists. In addition, the loop sites are easy to identify during
Leath growth, as they occur with increasing chemical dis-
tance l from the seed.

The burning algorithm is divided into two parts. In the
first part we start burning the end site, becoming a burning
site. Then, its nearest-neighbor cluster sites are burnt, and
become the new burning sites. This process is repeated from
each burning site, with the condition that only nearest-
neighbor sites are burnt which have a chemical distance l to
the starting site smaller than the burning site itself. This part
of the burning algorithm ends when the starting site is
reached. The thus obtained burnt sites are located along the
shortest path between the starting and the end site, and form
the so-called skeleton or elastic backbone �8,21	; an example
is shown in Fig. 9�a�.

In the second part of the algorithm we deal with the loop
sites. At the beginning all loop sites are considered as active
and stored in a list sorted by increasing chemical distance
l to the starting site. We start burning the first loop site, i.e.,
the one with the smallest chemical distance l to the starting
site, and proceed in the same way as for the skeleton. If
during this process two or more different sites are reached
which are known to be part of the backbone, then the burnt
sites �including the loop site� belong to the backbone, and the
corresponding loop site is no longer active and is removed
from the list. Otherwise it cannot be decided yet whether
these sites belong to the backbone or not, and one has to
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restore the previous state of the burnt sites including the loop
site, which remains active. In both cases one can continue
treating the next loop site �having a chemical distance l to
the starting site equal or larger than the previous one� in the
same way as described above. If the active loop site with the
largest chemical distance l has been considered, one starts
from the active loop site with the smallest l . The algorithm
ends when no new site has been found belonging to the
backbone during a complete run through the list of active
loop sites.

However, this sequential algorithm described above gen-
erally produces erroneous results, such that sites not belong-
ing to the backbone are added to it �see Fig. 9�c1� and �d1�	.
To avoid such failures, one has to start again at the active
loop site with the smallest chemical distance l to the starting
site whenever adding a new part to the backbone, instead of
proceeding sequentially. By doing this, the backbone is de-
termined correctly �see Fig. 9 �c2�, �d2�, and �e2�	. Unfortu-
nately this ‘‘back-start’’ algorithm is very time consuming,
since now the computing time depends quadratically on the
number of loop sites �22	.

The improvement of the algorithm is based on a simple
observation: The reason for the erroneous outcome of the
sequential version is due to the likely existence of so-called
‘‘tadpoles,’’ i.e., a group of sites which is linked to the actual
backbone through a singly connected path. According to Fig.
9�a�, the burning starting at the first loop site �denoted ‘‘1’’
in the figure� reaches the so far known backbone in one
point, which coincides with the starting site. Therefore, the
burnt sites are not identified as backbone sites and are re-
stored to their previous state. A new burning process, starting
from the next loop site, �denoted ‘‘2’’�, as shown in Fig.
9�b�, reaches the backbone in two points, one is the starting
site and the second a skeleton site �nearest-neighbor site of
‘‘2’’ to the right�, and these burnt sites are correctly identi-
fied as backbone sites. Proceeding sequentially in the list of
active loop sites in such a situation, i.e., by starting a burning
process from the site ‘‘3,’’ as shown in Fig. 9 �c1�, instead of

starting again at the active loop site with the smallest chemi-
cal distance l to the starting site �i.e., site ‘‘1’’�, as shown in
Fig. 9 �c2�, yield the erroneous result shown in Fig. 9 �d1�.
This failure can be easily prevented, if it is realized during a
burning process that only one site is burning during a burn-
ing step, reflecting the singly connected structure of the path,
and the backbone has not yet been reached, see Fig. 9 �c3�.
In such a case, one can immediately stop the burning process
from this loop site, keep the loop site active, and restore the
previous state of the corresponding burnt sites. In addition,
one can always proceed sequentially, even after adding a
new part to the backbone, as shown in Fig. 9 �c3�, �d3�, and
�e3�, and as a result the computing time scales only linearly
with the number of loop sites.

APPENDIX B: ESTIMATE FOR THE LATTICE SIZE
FOR PERCOLATION CLUSTERS AT CRITICALITY

To minimize the computer memory needed for the simu-
lations, we estimate the minimum lattice size L�2R�1 re-
quired to generate a cluster of l max shells, with the condition
that its radial extent rmax will not exceed R . To this end, we
employ the relation l min(r ,Nav)��min(Nav)r

dmin �cf. Eq. �5�	
valid in the regime r	rc(Nav), where �min(Nav)
���rc(Nav)	1�dmin, �	1, and rc(Nav)�(lnz�lnNav)/
ln(1/pc) �11	. From these relations one can estimate
rmax	(l max /�rc(Nav)	1�dmin)1/dmin. In our simulations we
consider typically Nav	106 configurations, so that for deter-
mining, e.g., structural properties with l max�2000 and
l max�1000 for d�2 and d�3, respectively, we estimate
rmax	1228 and rmax	309. We have actually used R�1400
and R�342 in d�2 and d�3, respectively, which in both
cases are much smaller than l max , and actually correspond
to the value of rmax obtained with the above formula for
more than 109 configurations.

FIG. 9. Example for a configu-
ration of a cluster and its back-
bone. The two end sites defining
the backbone are colored in light
gray, the sites found so far which
belong to the backbone are in dark
gray, and the remaining cluster in
black. The cluster sites marked by
a white square are loop sites,
named ‘‘1,’’ ‘‘2,’’ and ‘‘3.’’ The
white arrows indicate the burning
processes and their directions, as
discussed in Appendix A. The row
at the top of the figure shows the
different steps of the sequential
burning algorithm with the errone-
ous result �d1�, the row in the
middle the ‘‘back-start’’ algo-
rithm, and the row at the bottom
the improved burning algorithm
with the correct results �e2� and
�e3�, respectively.
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