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Optimal paths as correlated random walks
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Abstract. – A numerical study of optimal paths in the directed polymer model shows that
the paths are similar to correlated random walks. It is shown that when a directed optimal
path of length t is divided into 3 segments whose length is t/3, the correlation between the
transversal movements along the first and last path segments is independent of the path length
t. It is also shown that the transversal correlations along optimal paths decrease as the paths
approach their endpoints. The numerical results obtained for optimal paths in 1+4 dimensions
are qualitatively similar to those obtained for optimal paths in lower dimensions, and the data
supplies a strong numerical indication that 1+4 is not the upper critical dimension of this
model, and of the associated KPZ equation.

The directed polymer model [1] is a well-studied [2] model in the field of disordered systems.
The model is concerned with directed optimal paths in random media, which are characterized
by two growth rate exponents, ω and ν. The energy exponent ω determines the energy
variability of a path of length t by the relation ∆E ∼ tω, and the roughness exponent ν
determines the mean transversal distance of the optimal paths from the origin, through the
relation D ∼ tν . These two exponents are connected by the Huse-Henley scaling relation:
ω = 2ν − 1 [3]. An open and controversial question is whether this model (and the associated
KPZ equation [4]) has an upper critical dimension (UCD), above which the optimal paths are
uncorrelated and thus ν = 0.5 (and ω = 0). On one side of the controversy stand theoretical
studies which suggest the existence of an UCD, usually ≤ 4 [5–10]. On the other side stand
both theoretical studies which suggest no finite UCD [11–13], together with numerical studies
which find that in the 4-dimensional case the value of χ ≡ ω/ν is > 0 [14, 15], and that ν in
the 1+4 dimensional case is > 0.5 [16]. (The exponent χ is estimated for rough surfaces which
are characterized by the KPZ equation). However, these numerical results fail to convince the
proponents of the UCD hypothesis, which claim that the variables whose rates of growth are
measured in these numerical studies, are too close to one lattice unit [17,18].
The present work studies numerically the correlations between the transversal movements

along the optimal paths. It is shown that when a directed optimal path of length t is divided
into 3 segments whose length is t/3, the correlation between the transversal movements along
the first and last path segments is independent of the path length t. It is also shown that the
transversal correlations along optimal paths decrease as the paths approach their endpoints.
The numerical results obtained for optimal paths in 1+4 dimensions are qualitatively similar to
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Fig. 1 – The correlations between the first and third path segments of length t/3, in optimal paths
of 1+1, 1+2, 1+3 and 1+4 dimensions.

those obtained for optimal paths in lower dimensions, and the data supplies a strong numerical
indication that 1+4 is not the upper critical dimension of this model.
In order to study the correlations, a simple criterion is used. The optimal path of length t

is divided into 3 path segments of length t/3, and the direction of the transversal movement
of each path segment is recorded. Denoting by +1 movement in the positive direction of the
transversal coordinate, and by −1 movement in the negative direction, the correlation between
two path segments is measured by the mean value of the product of their movements. Note
that in some cases the movement is nil, and thus even the correlation of the path segment with
itself is < 1, but the probability of these cases decreases towards 0 with the length of the path
segments. Note also that the correlation measured in this way is simply the difference between
the probability that the movement along the two path segments is in the same transversal
direction, and the probability that the movement is in opposite transversal directions.
Figure 1 presents the correlations between the first and last path segments of paths which

are divided into 3 segments of length t/3, for the 1+1, 1+2, 1+3 and 1+4 dimensional cases.
Naturally, the strength of the correlations decreases with the dimension, but the important
fact is that in all cases the correlations approach constant values which are independent of t.
Note that the lower is the curve, the faster it rises towards its asymptotic value: The ratios
between the correlations at t = 240 and at t = 60 are � 1.14, 1.30, 1.58 and 2.00 for the 1+1,
1+2, 1+3 and 1+4 dimensional cases. Note also that no sign of any exceptional behaviour
can be observed in the data related to the 1+4 dimensional case.
These constant correlations between the path segments can only be a consequence of

positive correlation between the transversal directions of each pair of steps along the optimal
path, and it is intuitively clear that such correlations should also affect the value of ν. Figure 2
validates this intuition for the case of long-range–correlated random walks (LRCRW). In each
step of the LRCRW, the walker advances one step forward, and at the same time one step to
the right or to the left. The correlation between the transversal steps is of the type c(t) ∼ t−δ,
where t is the longitudinal distance between the steps. For δ < 1 the roughness exponent of
the LRCRW has the value ν = 1− δ/2, while for δ ≥ 1, ν = 0.5.
The figure presents the correlations between the first and last path segments of paths which

are divided into 3 segments of length t/3, for LRCRW whose values of δ are 0.90, 0.95 and 1.
The correlations in the first two cases rise towards asymptotic values which are independent
of t, but do depend on δ, while in the case of δ = 1, the correlations descend towards an
asymptotic value which, as shown in the following, should be 0. Thus, constant correlations
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Fig. 2 – The correlations between the first and third path segments of length t/3, in LRCRW whose
values of δ are 0.9, 0.95 and 1.

between path segments whose length and distance are ∼ t characterize LRCRW whose δ < 1
and ν > 0.5. In view of the picture presented in fig. 1, note that the data presented in fig. 2
does distinguish between the cases in which ν > 0.5, and the case in which ν = 0.5.
Consider a path (or walk) of length 2t, and divide it into two segments of length t. Denote

by ∆xf (t) and ∆xs(t) the transversal displacements of the first and second path segments,
and by ∆x(2t) the transversal displacement of the whole path. Note that ∆x(2t) = ∆xf (t)+
∆xs(t), and that the mean transversal distance between the origin and endpoint of a path of
length t is d(t) ≡ E(

√
∆x2(t)), where E denotes the mean value.

A basic relation in probability is

V ar(∆x(2t)) = V ar(∆xf (t)) + V ar(∆xs(t)) + 2Cov(∆xf (t),∆xs(t))

where V ar and Cov are the variance and covariance of the variables in parentheses. The value
of the exponent ν is defined by the asymptotic value of log4(V ar(∆x(2t))/V ar(∆x(t))) ≡
log4(R1 + 2R2), where the values of R1 and R2 are defined by

R1 ≡ (V ar(∆xf (t) + V ar(∆xs(t)))/V ar(∆x(t)),

R2 ≡ Cov(∆xf (t),∆xs(t))/V ar(∆x(t)).

In LRCRW, V ar(∆xf (t)) = V ar(∆xs(t)) = V ar(∆x(t)), and thus R1 = 2. The value
of ν in this case is the asymptotic value of 0.5 + log4(1 + Cov(∆xf (t),∆xs(t))/V ar(∆x(t))).
The second factor in the parenthesis is the correlation coefficient between ∆xf (t) and ∆xs(t),
which is closely related to the correlation as defined above and computed for figs. 1, 2. Thus,
for LRCRW whose δ ≥ 1 and ν = 0.5, the asymptotic value of the correlation, computed in
either way, should be nil.
Looking back at fig. 1, there is no doubt that the asymptotic value of the correlations

computed for the 1+4 dimensional case is > 0, and thus, as was verified in the numerical
study, that R2 is also > 0. If 1+4 is the UCD of the directed polymer model, then R1

computed for this case should be < 2. In the following it is shown that the opposite is true.
The basic difference between LRCRW and directed optimal paths is that in LRCRW,

the first t steps are not affected by the extension of the walk to length of (say) 2t, while
if a random lattice of length t is extended to length 2t, the t steps of the (old) optimal
path of length t are usually different from the first t steps of the (new) optimal path of
length 2t. As a consequence, in directed optimal paths, the variances of ∆xf (t), ∆xs(t)
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Fig. 3 – The variances of the variables ∆xf (t), ∆x(t) and ∆xs(t). Each data point of the upper and
lower curves is computed from optimal paths of length 2t, while each data point of the middle curve
is computed from optimal paths of length t.

and ∆x(t) are not necessarily equal, and as shown in fig. 3 for the 1+4 dimensional case,
V ar(∆xf (t)) > V ar(∆x(t)) > V ar(∆xs(t)). This result implies that the strength of the
correlations between pairs of steps separated by the same longitudinal distance is a decreasing
function of the longitudinal distance from the origin. Further numerical results indicate that
in directed optimal paths of length t, the correlation between pairs of steps whose longitudinal
distances from the origins are t∗, t∗ + T , is A(t∗/t)f(T ), where for 1 � T � t, f(T ) ∼ T−δ,
and A(t∗/t) is a decreasing function of its argument.
The decrease in the strength of the correlations along the optimal path is an outcome of

the fact that the origin is fixed, while the endpoint is freely chosen from all the lattice sites at
longitudinal distance t from the origin. In crude terms it might be said that the long-sighted
walker locates a low-energy region in the bulk of the lattice, and starts moving in its direction.
Thus, the direction of the path is more clearly defined near its start than near its end.
In cases that the correlations between path segments are positive, R2 > 0, and a lower

bound on the value of ν is log4 R1. If R1 > 2, ν > 0.5. As noted above, in LRCRW R1 = 2,
while, as shown in fig. 3, this equality does not necessarily hold for directed optimal paths.
Figure 4 presents the estimated values of R1 for the 1+1 and 1+4 dimensional cases. In the
1+1 dimensional case R1 � 2.22, and the lower bound on the value of ν is 0.57. In the 1+4
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Fig. 4 – The value of R1 in optimal paths of 1+1 and 1+4 dimensions. Note that the lower curve is
the sum of the upper and lower curves of fig. 3, divided by the middle curve of that figure.
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dimensional case R1 � 2.09, and the lower bound on the value of ν is 0.53. This data supplies
a direct numerical evidence that 1+4 is not the UCD of the directed polymer model.
In summary, this numerical study leads to two main conclusions: The first is that the

correlations between path segments of directed optimal paths are similar to those of LRCRW
whose values of ν are > 0.5. The second conclusion is that unlike LRCRW, the correlations
between steps of optimal paths are a decreasing function of the longitudinal distance from
the origin. No sign for the existence of an UCD ≤ 4 can be observed in the data, and direct
numerical evidence presented at the end confirms that the value of ν in the 1+4 dimensional
case is > 0.5.
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