PHYSICAL REVIEW A

VOLUME 38, NUMBER 4

AUGUST 15, 1988

Fractal measures of diffusion in the presence of random fields
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We study diffusion in a linear chain where random fields are located at each site and can accept
the values T E with equal probability. While the average density distribution of a random walker
scales and is described by a single exponent, it requires an infinite hierarchy of exponents a to
characterize the fluctuations. Their density distribution f (a) is a single-hump function and depends

continuously on the magnitude of the field E.

The problem of anomalous diffusion in disordered sys-
tems has been studied extensively in recent years.!”®
Typically, the mean-square displacement (R*(¢)) of a
random walker follows a power-law behavior
(Rz(t))~t2/d'”. In uniform systems, d,, =2 (Fick’s law),
while in self-similar fractals the motion of the walker is
slowed down in all length scales and d,, > 2.

“Ultra”-anomalously slow motion characterized by a
logarithmic time dependence for (R*(t)) was found by
Sinai! when considering diffusion in a linear chain in the
presence of random fields. In order to obtain a deeper
understanding of the underlying dynamics and to charac-
terize the process further we have studied the fractal mea-
sures’~!? of the random walk. We find that while the
average density distribution ( P(x,t)) scales with a single
exponent, it requires an infinite hierarchy of exponents to
describe the fluctuations of P(x,t). These exponents a
and in particular their density distribution f(a)
represent the essential quantities to characterize the
dynamical process. We have found that f(a) is a single-
hump function and is similar in shape to those found to
_ characterize a large variety of other “multifractal” phe-

nomena,’~ ! including fluid turbulence,” ! kinetic aggre-
gation,'?~'* and voltage drops in percolation systems. '’

Consider a linear chain with random fields applying at
each site. The transition rates w; ;. , between neighboring
sites are

Wi ini=3(1£E;), (D

where the random fields E; can accept the values tE
with equal probability. For this system Sinai' found the
remarkable result that the mean-square displacement
(X*t)) of a random walker follows asymptotically

(X2(t)) ~In* . )

The origin of this logarithmic slow motion lies in the fact
that the walker can get easily stuck in compensated re-
gions of the chain where fields of opposite directions
point to the same site (“hot” sites, see Fig. 1).

An important quantity to characterize the walk is the
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density distribution P(x,t), defined as the probability to
find the walker at time ¢ in distance x from its starting
point. First we study the mean density distributions
(P(x,t)) averaged over the ensemble of random chains
with transition rates (1). We have used the exact
enumeration method®'® which enables us to enumerate
exactly P(x,t) for single configurations. Since the
characteristic length scales as In?t, Eq. (2), the simplest
scaling assumption for ( P(x,1)) is (see also Ref. 17)

(P(x,))=In"2tf (x/In’t) . 3)

The prefactor In~?%t is due to normalization. In Fig. 2 we
have plotted (P(x,¢))In’*t as a function of x/In?t for
various values of x and ¢. The data collapse strongly sup-
ports the scaling ansatz. This indicates that essentially
one exponent is needed to characterize the mean density
distribution. The corresponding moments {X") scale as
((X2 )n/2 ) _ 1n2nt_

Next we consider the fluctuations in the single-chain
probabilities P(x,t) by studying their fractal measures.
We define a partition function

+x (1)
Zgt= 3 PU1)~x(1)""?, (4)
i=—x(t)
“cold’'site
+
o
hot''site
FIG. 1. Sketch of the linear chain with random fields

E;==F at each site i. Fields pointing to the left and right are
denoted by arrows ¢/ and \ , respectively. The valleys represent
hot sites where the walker can get stuck, while the peaks cold
sites where the walker is not likely to stay.
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FIG. 2. {p(x,1))In’ as a function of x /In’ for E =0.7 at
times ¢t =10%0), 2Xx10* (A), 4x10* (@), and 10° (A) for
values of x between 5 and 150. To obtain {P(x,t)), we used
the exact enumeration method and averaged over 1000 random
chain configurations, each consisting of 1000 sites. To show the
convergence to the asymptotic time regime, we have plotted
also (X2?)/In% in the inset. After ~ 107 time steps, the curve
approaches a constant, in excellent agreement with Sinai’s pre-
diction (2).

where x (¢) is the mean displacement on the considered

chain. Equation (4) defines the set of exponents 7(q). A

similar ansatz has been used, e.g., in studies of chaotic

dynamical systems!! or in kinetic aggregation.'?
Following Ref. 13 we rewrite (4) as

Z(@= [ pinipidinp , (5)

where n (p)d Inp is the number of sites for which Inp is in
the range (Inp, Inp +d Inp). For general g, the integra-
tion in (5) is dominated by some value p =p*(q) which
maximizes the integrand pn(p) and depends explicitly
on q. Correspondingly, for a given g value a certain sub-
set i(g) dominates the sum (3) and p*(q) is the charac-
teristic value of p (i,t) for i €i(q).

Following Halsey et al.!! we write the scaling ansatz
p*~X"%9 and n(p*)~X/'? which define the scaling
exponents a(q) and f (q). By definition, a(q) is the singu-
larity strength of the probabilities and f (q) denotes their
density distribution. From (4) we obtain

Z(g)=n(p*)p* ~x ~l4a—-f(2)] ©)
and hence
m(g)=qalg)—f(q) . 9

In the limit £ =0 one has

P(x,t)~t "2 exp(—x2/1)
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and (4) becomes
Z(g)= [ pUx’,ndx'~x—@71 . (8)

This gives 7(q)=q —1 and hence a=f(a)=1. In the
limit E—1 the hot sites represent traps from which the
walker cannot escape. Hence, after a few time steps we
have

P(x,)=8,, , )

where x is the coordinate of the trap closest to the origin
of the walk. Substituting (9) in (4) yields 7(q)=0 for ¢ >0
and 7(q)=— o for ¢ <0. The two limiting cases are
shown in Fig. 3.

For the case of general E we have calculated P (x,?) for
each chain by the exact enumeration method. From (4)
we obtain 7(q) for a single chain, which then was aver-
aged over many random configurations. We found that
for large times ¢ the exponents 7(q) were independent of ¢.
The results for 7(q) for several values of the fields are
shown in Fig. 3(a). The figure suggests that the whole
hierarchy of exponents changes continuously with E be-
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FIG. 3. (a) The exponents 7(q) vs g for several values of E.
The results represent averages over 200 lattice configurations
each. (b) The density distribution of the singularity strength
fla) vs a for E =0.4(0) and 0.7(®). ap;, and a,,, represent
the asymptotic slopes (g —+ o ) of 7(q) [(a)].
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FIG. 4. The histogram n (p) of P(x,t) for (a) E =0.7 and (b)
E =0.8 at ¢t =10* for 2000 configurations each. Note that n(p)
is significantly broader than the corresponding n(p) for DLA
(Ref. 13) and percolation (Ref. 15).

tween the two limiting cases E =0 and E =1. This is to
be compared with the exponent of {X?) in Sinai’s law
Eq. (2) which is independent of the field E.

It is conventional to also calculate the Legendre trans-
form with respect to g of 7(q), f(a)=ga—r7(q), where
a=dr/dq. The minimum and maximum values a;, and
Qpax Of the singularity strength a are obtained from the
asymptotic slopes of 7(q) for g — + «© and g — — =, re-
spectively; a,,;, describes how the probabilities of the hot-
test sites of the chain scale with x, while from a,,, we ob-
tain information on those regimes which have very small
probability to be visited (‘“cold” sites). For E =0, we
have f(a)=3, , and hence a;,=0a,,=1, indicating the
absence of hot and cold sites. In the case of E—1 we
find a.,;, =0, an,,= ©, representing the maximum sepa-
ration between hot and cold sites. In Fig. 3(b) we show
f(a) versus a for several values of E. The functions f(a)
have a single-hump shape. With increasing field E, o,
increases and a,;, decreases.

From P(x,t) with x between —x(t) and +x(z) [see
Eq. (4)] we determine the distribution function n(p). A
representative result is shown in Fig. 4. For E =0.7, the
function has a pronounced and broad-structured max-
imum which for E =0.8, splits into several well-
separated peaks. In both cases, there exists a long tail
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which extends to the extremely small values of P(x,¢) at
the cold sites of the chain. The form of n (p) for E =0.7
resembles (although it is much broader) the shape of the
growth probability distribution in kinetic aggregation'>'*
and the voltage distribution in random resistor net-
works.!? In fact, there is a close analogy between these
systems and the problem of diffusion in random fields.
The function P(x,t) considered here is analogous to the
growth site probability distribution p; in diffusion-limited
aggregation (DLA), which is defined as the probability
that a given site i of the perimeter sites becomes part of
the aggregate in the next time step. In DLA the sites at
the tips of the cluster can be occupied more easily, and p;
is large (hot tips). In contrast, very few particles can get
deep inside the fjords, where p; is extremely small. A
similar role is played by the voltage drops across the
bonds in random resistor networks.

In summary, we have studied the fluctuations of the
density distribution in the presence of random fields
within a range x(¢) around the origin of the random
walker. We have found that they are described by an
infinite hierarchy of exponents rather than by a single gap
exponent. We also checked how the cutoff x (¢) and the
type of averaging used here affect the main result for
f(a). To this end, we varied the cutoff between x (¢)/2
and 2x(z) and found that the shape of f(a) remained
essentially unchanged. We also calculated 7(g) using Eq.
(4) by averaging Z (g) over many configurations. In this
case we found slight deviations from Fig. 3, which leaves
the question if we reached the asymptotic regime or not,
open. The question of whether the multifractality is a
feature of the dynamical process or/and of the steady
state (as for the voltage drop distribution in percolation)
is also open. We know,!” however, that in the case of
diffusion on percolation networks (without bias) both the
dynamical process and the steady state might be of
different nature. While the steady state is equivalent to
the voltage drop problem and thus should also show mul-
tifractality, the dynamical process is described by
Z(g,t)~x 7 a-v and thus is governed by a single gap
exponent.'®
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