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Abstract

We study the localization of electronic wave functions in the one-dimensional Anderson model
with diagonal disorder, where the site energies are long-range correlated. We �nd di�erent be-
havior at the band edge and at the band center. Close to the band edge, the correlations lead to
a decrease in the localization lengths. At the band center, in contrast, the localization length is
drastically enhanced by the correlations. Using level statistics we �nd strong evidence that also
these states remain localized. c© 1999 Elsevier Science B.V. All rights reserved.
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Eigenstates of the one-dimensional Schr�odinger equation in a random potential are
usually localized [1,2]. Exceptions have been found, however, [3–5], indicating that
localization in d=1 is not a general phenomenon but depends on the speci�c structure
of the random system.
Here, we study wave functions in the Anderson model with diagonal disorder in

d= 1. In the tight-binding approximation, the Schr�odinger equation becomes

E n = �Vn n −  n+1 −  n−1; (1)

where E is the eigenvalue, | n|2 is the probability amplitude of the wave function for
site n, and �Vn is the local potential. Vn are random numbers distributed in the interval
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Fig. 1. �(E) for correlated chains with 
 = 0:1 (full symbols) of disorder amplitude (a) � = 1:0 and
(b) �= 0:1. For comparison, the results for uncorrelated chains with the same variance of the potentials are
also shown (open symbols). The system sizes were N = 2n0 with n0 = 13(◦); 15( ); 17(�) and 19(4).

[ − 1; 1], with 〈V 〉 = 0, and � is a positive constant describing the amplitude of the
disorder. In contrast to the conventional Anderson model, where the Vn are uncorrelated,
we consider site energies that are long-range correlated with the correlation function
C(l), decaying by a power law [6],

C(l) ≡ 〈VnVn+l〉 ∼ 1
N

N∑

n=1

VnVn+l ∼ (1 + l2)−
=2 → l−
; 0¡
¡ 1: (2)

For solving Eq. (1) numerically, we generated correlated one-dimensional systems
with up to 219 sites, using the method of double Fourier transform [6]. We computed
the localization lengths �(E; �), following the transfer-matrix method [7,8]. Averages
were taken over 100 chains. Fig. 1 shows �(E) for |E| ∈ [0; 2] for correlated chains
of correlation exponent 
= 0:1 with (a) � = 1:0 and (b) � = 0:1. For comparison, the
results for uncorrelated chains with the same variance of the potentials are also shown.
Close to the band edge the states of the correlated systems are also localized with �
even smaller than in the uncorrelated case. This is a surprising result indicating that
the presence of correlations makes the states more strongly localized. A scaling theory
has been developed to explain this regime [9].
Close to the band center, however, the localization lengths � of the correlated sys-

tems rise to very high values and scale roughly linearly with the system size. This
seems to indicate extended states, but localized states with localization lengths larger
than the considered system sizes cannot be excluded. In order to decide between these
two possibilities we have applied the method of level statistics.
Level statistics is a powerful tool for determining the localization properties of elec-

tronic wave functions [10,11]. For extended states, the level spacing distribution P(s)
of consecutive eigenvalues (levels) Ei shows the universal random matrix theory re-
sult, which is well approximated by the Wigner surmise, P(s) = (�=2)s exp(−�s2=4).
Here, s = |Ei − Ei−1|=� where � is the mean level spacing in the energy interval
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Fig. 2. (a) Level spacing distribution P(s) for the one-dimensional Anderson model with correlated diagonal
disorder 
=0:1 and �=1 in the energy interval 1:15¡E ¡ 1:20. The data for three system sizes is compared
to the Wigner and the Poisson distribution. (b) Energy dependence of I0 = 〈s2〉=2 for the same three system
sizes and �= 1 (full symbols) and �= 0:1 (open symbols). Since I0(E; L) increases with increasing system
size, all states are localized.

considered. For localized states the uncorrelated eigenvalues are described by the
Poisson distribution, P(s) = exp(−s). For �nite systems, the shape of P(s) is in
between the two limiting cases and approaches one of them with increasing system size
(see also [12]).
Fig. 2a shows the system-size dependence of the P(s) distribution for 
 = 0:1 in a

representative energy interval. The eigenvalues for the distributions were numerically
calculated using a Lanczos method. Evidently, the distribution approaches the Poisson
limit with increasing system size, even though P(s) is approximately equal to the
Wigner limit for the smallest system size considered.
Since it is tedious to compare the P(s) distributions for several system sizes and

energy intervals, we calculate the size dependence of the quantity I0 = 〈s2〉=2, which
is related to the second moment of the level spacing distribution 〈s2〉= ∫∞

0 s2P(s) ds.
If the eigenstates are localized, I0 increases monotonically with increasing system size
approaching the Poisson limit I loc0 =1 for in�nite system size. If the modes are extended,
I0 decreases monotonically and reaches the Wigner limit I ext0 ≈ 0:6. Directly at a
transition from localized to extended states, the states are “critical” and the level spacing
distribution P(s) as well as the quantity I0 = I crit0 are system-size independent. Such a
transition has been found e.g. for the uncorrelated Anderson model in d = 3 [10,11],
but not in d=2 [13]. The value of I crit0 is not universal, but it is always clearly above
I ext0 ≈ 0:6.
Fig. 2b shows our results for I0(E; L) for three system sizes L and two values of the

disorder width �. First, we discuss the case � = 1. For 1:1¡ |E|¡ 1:3, the quantity
I0(E; L) increases with increasing L and all states are localized in this energy regime.
For |E|¿ 1:3, I0(E; 214) is even closer to I loc0 = 1, indicating more strongly localized
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states. For |E|¡ 1:1, I0(E; 214) is near to the Wigner limit I ext0 ≈ 0:6. At the �rst glance,
this could be interpreted as an indication for extended states at small energies |E|. But
this interpretation cannot be correct: If the wave functions became extended for some
small |E|, there would be a transition from localized to extended states somewhere in
the spectrum. At such a transition I0(E; L) has to be system-size independent and equal
to I crit0 . Both conditions cannot be ful�lled (for the same energy E), since I0(E; 214)
is smaller than I0(E; 217) for |E|¿ 1:1 and smaller than any possible value of I crit0 for
|E|¡ 1:1. Thus, there cannot be any transition from localized to extended states, and
all states must be localized including those for |E|¡ 1:1. Hence, the small values of
I0(E) for |E|¡ 1:1 are not due to extended states but to weakly localized states with
localization lengths much larger than the system sizes L. The same kind of behavior
has been observed for the uncorrelated Anderson model with diagonal disorder in d=2,
where also all wave functions are localized [13].
We �nd the same type of behavior for other values of the disorder width � and for

other correlation exponents 
 with 0¡
¡ 1. Our results for � = 0:1 are included in
Fig. 2b for the energy range 1:8¡ |E|¡ 2:0. The same arguments as in the previous
paragraph apply here.
We have strong evidence from level statistics that the wave functions in the band

center are not extended but weakly localized modes with �nite localization lengths
much larger than the system sizes. We also want to point out that in this case the
direct calculation of the localization length, using the transfer-matrix method, is not
su�cient to decide about the question if states are extended or not.

Note added in proof

After completing this work, we learnt of recent articles by Moura and Lyra [14],
where Anderson chains with correlated site energies have been studied using a renor-
malization group technique. The conclusions of Moura et al. for correlation exponents

 ¿ 0 agree with our �ndings.
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