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Abstract

The structure of linear polymers modelled by self�avoiding random walks

�SAW� on the backbone of two�dimensional percolation clusters at critical�

ity is studied	 To this end� all possible SAW con
gurations of N steps on

a single backbone con
guration are enumerated exactly� and averages over

many backbone con
gurations are performed to extract the mean quantities

of interest	 We determine the critical exponents describing the structure of

SAW� both in Euclidean and topological space� and the corresponding mean

distribution functions for the end�to�end distance after N steps	 A relation

between the exponents characterizing the asymptotic shape of these distri�

butions and those describing the total number of SAW of N steps on the

backbone is suggested and supported by numerical results	
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I� INTRODUCTION

Linear polymers embedded in disordered media constitute one of the most challenging

problems in the physics of polymers� Indeed� this subject is relatively young as compared

to the more traditional and extensively studied one of linear polymers� modelled by self�

avoiding random walks 
SAW�� embedded in a regular system where no �external� constraints

are imposed on the chains 
Flory 
���� Fisher 
�		� de Gennes 
���� Doi and Edwards 
��	�

des Cloizeaux and Jannink 
�����

The study of linear polymers in a random medium is of practical interest for understand�

ing the transport properties of polymeric chains in porous media� such as in enhanced oil

recovery� gel electrophoresis� gel permeation chromatography� etc� 
Doi and Edwards 
��	�

Dullien 
���� Andrews 
��	� Baumg�artner 
����� In this respect� it is useful to learn about

the static or conformational properties of linear chains in the presence of quenched disorder�

i�e� how the surrounding structural disorder in�uences their asymptotic shape� As a quite

general model of a random medium� percolation 
Flory 
��
� Stau�er and Aharony 
����

Sahimi 
���� Bunde and Havlin 
��	� represents the simplest and mostly used one�

The question of interest is whether the statistical behavior of SAW change in the presence

of structural disorder 
modelled by lattice percolation clusters�� with respect to their known

behavior on regular lattices� There is a quite general concensus that it is only at the

percolation threshold that non�trivial changes can be expected� In other words� the �critical�

exponents 
to be de�ned below� describing the shape of SAW at the percolation threshold

are di�erent than in the case of a regular lattice 
Nakanishi 
���� Barat and Chakrabarti


�����

In this work� we consider SAW on percolation clusters at criticality in two dimensions�

Since we aim at describing �in�nitely� long chains� we study them directly on the backbone

of the clusters� where dangling ends are absent on all length scales� More precisely� we

enumerate all possible SAW con�gurations of N steps for a single backbone� and then

avegrage over many di�erent backbone con�gurations to extract the mean quantities of

�



interest� We determine the critical exponents describing the structure of SAW and the

corresponding mean distribution function for the end�to�end distance after N steps�

The paper is organized as follows� In Section II� we brie�y review the main relevant

properties of SAW on regular lattices� In Section III� we describe the percolation model

employed and the corresponding backbone� In Section IV� we consider SAW on the backbone

of percolation clusters at criticality� The structural functions and the total number of SAW

con�gurations are obtained� Finally� in Section V we conclude with a brief summary of our

main results�

II� SAW ON REGULAR LATTICES

As a simple model for linear polymers in a good solvent we consider self�avoiding random

walks 
SAW� on regular lattices in d dimensions� The structure and statistical properties

of SAW have been studied extensively in the past decades 
for general reviews see e�g� de

Gennes 
���� des Cloizeaux and Jannink 
����� In what follows� we brie�y review the main

known results relevant for our present study�

Consider SAW of N steps on a lattice� A quantity which characterizes the spatial exten�

sion of the chain can be obtained by calculating the end�to�end distance r
N�� By averaging

r
N� over all possible N�steps walks one obtains

�r
N� � N� 

�

where � is a universal exponent 
independent of the lattice type and depends only on d� and

is given by � �� ��
d� ��� for 
 � d � �� as suggested by Flory 

����� Actually� the Flory
formula yields the exact result in one and two dimensions� and predicts the correct value for

the critical dimension� d � �� Indeed� for d � �� SAW become equivalent to simple random

walks 
RW� and � � 
��� In three dimensions� it agrees quite well with the best numerical

estimate� � � ������ ����� 
Guttmann 
�����
Linear chains generated by SAW� which we refer to as SAW�chains� are random linear

fractals having a fractal dimension df � 
�� 
Havlin and D� Ben�Avraham 
����� For d � ��

�



the fractal dimension df sticks at the value df � � as for chains generated by simple random

walks� referred to as RW�chains�

A more detailed information about the spatial structure of SAW is given by the prob�

ability P 
r�N� that after N steps the end�to�end distance of a SAW is equal to r� This

quantity obeys the scaling form 
de Gennes 
���� des Cloizeaux and Jannink 
����

P 
r�N� �



r
f
r�N�� 
��

and is normalized according to
R
dr P 
r�N� � 
� The analytic form of the scaling function

f
x� is known asymptotically

f
x� � xg��d� x� 
 
��

where g� � 
�� 
��� 
des Cloizeaux 
����� � is the second universal exponent for SAW 
see

below� and

f
x� � xg��d exp
�c x��� x� 
 
��

where g� � � �d
� � 
���� 
�� 
�� 
McKennzie and Moore 
��
� and � � 
�

� �� 
Fisher


�		��

The critical exponent � 
� 
� is related to the total number CN of SAW con�gurations

of N steps by

CN � A �N N��� 
��

where � is the e�ective coordination number of the lattice and is not universal� and A is

a constant� Numerical results yield � � ��	��� � �����
 for the square lattice 
Guttmann
and Wang 
��
� Masand� Wilensky� Massar� and Redner 
����� The fact that � 	 � means

that the self�avoiding condition imposes further constraints to the walks in addition to the

obvious one that the walk can not make a step to the direction where it just comes from�

The latter would yield �� � �d� 
 for hypercubic lattices�
The self�avoiding condition thus reduces dramatically the value of CN as compared to the

case of simple walks for which � � �d on hypercubic lattices� yielding simultaneously a small

�



enhancement factor N���� For dimensions d � �� however� � � 
 since the excluded�volume
restriction becomes irrelevant above the critical dimension�

The exponent � is known exactly for d � �� � � ����� 
Niehnhuis 
����� A good

approximation for � has been suggested recently� � � 
�
��d��	� for 
 	 d � �� and � � 

for d � � 
Roman 
����� This expression agrees remarkably well with the suggested exact
value in d � �� and with the best numerical estimates presently available� i�e� � � 
��������
in d � � 
Woo and Lee 
��
�� and � � 
�
	
� ����
 in d � � 
Guttmann 
�����
As we will see below� it is useful to study the behavior of the quantity 
lnCN��N when

considering polymers embedded in a disordered medium� It is therefore instructive to study

the same quantity in the case of a regular lattice� We consider here the square lattice for

which exact enumeration results for CN are available so far for N � �� 
Guttmann and

Wang 
��
� Masand et al� 
����� Using these values� we have plotted 
lnCN��N versus N

as shown in Fig� 
� The continuous line corresponds to a numerical �t obtained in the range


� � N � �� with the expression




N
lnCN �

lnA

N
� ln��

� � 

N

lnN 
	�

yielding � � ��	�
 � ���
�� � � 
��� � ���� and A � 
��� � ����� Thus� compared to the
asymptotic values � � ��	��� � �����
 and � � ������ our �t values di�er by less than

����� from � and by about �� from �� respectively�

We proceed by describing the underlying random structure in which SAW will be em�

bedded�

III� THE BACKBONE OF A PERCOLATION CLUSTER

Consider now the case in which the linear polymers are embedded in a random medium�

In our simpli�ed lattice model� this corresponds to having randomly sites which are blocked�

i�e� are not available to the SAW� The natural model in this case is percolation 
Flory 
��
�

Stau�er and Aharony 
���� Sahimi 
���� Bunde and Havlin 
��	��

�



In our calculations we consider a square lattice of unit lattice constant� and generate large

percolation clusters using the Leath growth method 
Leath 
��	� Alexandrowics 
����� The

growth starts at the seed 
origin of coordinates�� whose nearest�neighbor sites can be either

occupied with probability p 
they become cluster sites�� or blocked 
they can not be occupied

later� with probability 
� p� Thus� in the �rst grow step sites which are at distance r � 


from the seed can be occupied� It is customary to refer to them as belonging to the �rst

grow �shell�� In the second step� the growth starts again from each of the sites at the �rst

shell� Then� sites which are at distance r � � or r �
p
� can be occupied� The new cluster

sites generated in this second growth step belong to the second shell� We say that they are

at the �chemical� distance 
 � � from the seed� Repeating this process again and again from

the last shell of cluster sites� one can generate large percolation clusters up to the maximum

number of shells required� Note that the cluster sites belonging to a given shell are at the

same chemical distance 
 from the seed� while their corresponding Euclidean distances r

from the seed can be very di�erent from each other�

Since we aim at describing in�nitely long SAW�chains on a percolation cluster� we can

disregard the singly connected substructures� i�e�� dangling ends� from the cluster where long

SAW�chains can get stuck� Thus� we are confronted with the determination of the backbone

of the cluster� Once a percolation cluster having the required maximum number of shells

has been generated� we take one of the sites at the last grown shell at random� say site A�

and determine the backbone of the cluster between A and the seed 
Herrmann� Hong� and

Stanley 
���� Porto� Bunde� Havlin� and Roman 
���� 
Fig� �a��

Before proceeding with our discussion on SAW� we review some of the basic structural

properties of the backbone at the critical concentration pc� Fig� �b illustrates the two

possible metrics which can be de�ned on the backbone for an arbitrary backbone site B� i�e�

its Euclidean distance r and its chemical distance 
 from the seed� On average� the mean

chemical distance of backbone sites at distance r from the seed scales as 
Pike and Stanley


��
� Havlin and Ben�Avraham 
����

	



h
i � rdmin 
��

where dmin � 
�
��� ����� in two dimensions 
Herrmann and Stanley 
���� Neumann and
Havlin 
����� Thus� Eq� 
�� yields the scaling relation between the two metrics� which will be

used in the following section� Finally� the backbone has a fractal dimension dB� � 
�������

in 
�space� yielding the value dBf � dB� dmin � 
�	�� ���� in r�space 
Porto et al� 
�����

IV� SAW ON THE BACKBONE OF PERCOLATION

Now consider SAW on the backbone of a percolation cluster 
Fig� �c�� For convenience�

we study the case in which one end of the SAW is kept �xed at the seed� After N steps� the

SAW�chain reaches a backbone site located at Euclidean distance r and chemical distance 


from the seed� yielding the end�to�end distances r
N� and 

N�� respectively 
see Fig� �c��

A� The critical exponents �r and ��

By considering all SAW�chains of N steps on the given backbone� we obtain the av�

erage quantities �r
N� and �

N�� respectively� A second average over di�erent backbone

con�gurations yields the �nal quantities�

h�r
N�i � N�r 
��

and

h�

N�i � N�� 
��

where� according to Eq� 
��� the critical exponents �r and �� are related to each other by

�r �
��
dmin

� 

��

It is now generally accepted that at the percolation threshold pc� SAW belong to a

di�erent universality class than for regular lattices� It is found that in d � �� the value of

�



�r is de�nitely larger than � 
Nakanishi 
���� Barat and Chakrabarti 
����� Some authors

conclude that �r � ���	 � ���� 
Meir and Harris 
����� �r � ���� � ���� 
Roman� Dr�ager�
Bunde� Havlin� and Stau�er 
����� �r � ����� ���
 
Woo and Lee 
��
� Vanderzande and
Komoda 
���� and �r � ������ ����� 
Rintoul� Moon� and Nakanishi 
����� while others
have proposed slightly larger values� i�e� �r � ���� � ���
 
Nakanishi and Moon 
���� and
�r � ����� � ����� 
Grassberger 
����� Away from pc� it is believed that the standard

universality class is recovered� i�e� �r � � for p � pc 
Nakanishi 
���� Barat and Chakrabarti


�����

Our numerical results for h�r
N�i and h�

N�i are reported in Fig� �� from which we obtain

�r � ����� ����� and �� � ����� ���
� 


�

From the result for �� and the relation Eq� 

�� we obtain a better estimate for �r as

�r �
��
dmin

� ����	� ���
�� 

��

This result is in good agreement with the values reported by Nakanishi and Moon 

�����

and Grassberger 

����� We proceed with the discussion of the end�to�end distribution

functions both in r� and in 
�space�

B� The structural functions PB�r�N� and PB���N�

For each backbone� we consider again all possible SAW�chains of N steps and determine

the probability PB
r�N� that the Nth step reaches a backbone site at a distance r from the

seed� By performing a con�gurational average over many backbone con�gurations we obtain

the quantity hPB
r�N�i� which is plotted in Fig� ��
We �nd that hPB
r�N�i is a scaling function of the variable x � r�N�r � i�e�

hPB
r�N�i � 


r
fB
x��

in agreement with a previous work 
Roman et al� 
����� The numerical results suggest the

following form for fB
x��

�



fB
x� � xg
r
�
�dB

f � x 	 
 

��

and

fB
x� � xg
r
�
�dB

f exp��a x�r �� x � 
� 

��

We obtain� gr��dBf � �������� gr��dBf � ��
����� and �r � �������� the latter is consistent
with the value �r � 
�

 � �r� � ��� � ���� Using the value dBf � 
�	� � ���� we �nd�
gr� � ���	� ���� and gr� � 
��	� �����
More accurate are the results for the structural function in 
�space� hPB

� N�i� These

are shown in Fig� �� suggesting the following scaling behavior as a function of 
�N�� 
Roman

et al� 
����

hPB

� N�i � 





�



N��

�g�
�
�dB

�

� 
�N�� 	 
 

��

and

hPB

� N�i � 





�



N��

�g�
�
�dB

�

exp��b 

�N������� 
�N�� � 
 

	�

and is normalized according to
R
d
 hPB

� N�i � 
� We obtain g���dB� � 
�����
� g���dB� �

���� � ����� and �� � ��� � ���� the latter is consistent with the result �� � 
�

 � ��� �

����� ����� Using the value dB� � 
���� ���
 we �nd� g�� � ����� ��
� and g�� � 
���� �����
Actually� the values for g�� and gr� are related to each other by 
Roman et al� 
����

gr� � g�� dmin 

��

yielding the better estimate gr� � ���
� ��
��

C� The total number of con�gurations CN�B

In the following� we try to relate the exponent gr� to other critical exponents describing

SAW on the backbone� similarly as for regular systems 
see Eq� 
���� This leads us to study

the total number of SAW con�gurations on the backbone� CN�B�

�



Due to the disordered structure of the backbone� the number CN�B can �uctuate strongly

among di�erent backbone con�gurations� A better behaved quantity is lnCN�B� hence we

consider �rst the �quenched� average hlnCN�Bi� Indeed� the values of lnCN�B are approx�

imately normally distributed� as indicated in Fig� 	a� The width of the distribution� �N �

grows as a power of N as shown in Fig� 	b� as

�N �� �� N
� 

��

with �� � ����� ���� and 
 seems to tend to 
 � 
�� for large N �

Our numerical results further indicate that the location of the maximum of the Gaussian�

i�e� hlnCN�Bi� can be well described by the analytic form




N
hlnCN�Bi � lnB�

N
� ln�� �

�� � 

N

lnN 

��

as shown in Fig� �a� The �t yields the values �� � 
���	 � ���
� �� � 
��	 � ���� and
B� � 
��	� ����� Our value for �� agrees well with the result �MC � 
����� ����� obtained
by generating SAW with Monte Carlo methods 
Woo and Lee 
��
�� In the latter case� the

most probable SAW con�gurations are actually generated� which correspond to our quenched

average results� Our value for �� is also consistent with �MC � 
��
 � ���� 
Woo and Lee

��
��

Let us consider next the annealed average� i�e� hCN�Bi� A good �t to the numerical

results is obtained with the expression




N
ln �hCN�Bi� � lnB�

N
� ln�� �

�� � 

N

lnN 
���

yielding �� � 
��	� � ���
� �� � 
��� � ���� and B� � 
��� � ����� as shown in Fig� �b�
It is interesting to note that our value for �� is consistent with the suggested annealed

result �ann � pc �� where pc � ������� and � � ��	��� 
Harris 
���� Woo and Lee 
��
�

Grassberger 
�����

To characterize the �uctuations of CN�B between di�erent backbone con�gurations more

generally� we study the moments hCq
N�Bi��q� where q is a parameter� A similar study has


�



been performed for �ideal� chains� i�e� chains which can intersect themselves� on percolation

clusters at criticality� This model leads also to non�trivial results 
Giacometti and Maritan


����� It is easy to show that the quenched average can be obtained as

hlnCN�Bi � lim
q��

ln
h
hCq

N�Bi��q
i
�

To proceed further� we make the ansatz

hCq
N�Bi��q � Bq �

N
q N�q�� 
�
�

which is a generalization of Eq� 
��� where �q are generalized e�ective coordination numbers

of the backbone and �q generalized enhancement exponents� In the following� we study

Eq� 
�
� both analytically and numerically�

First� we evaluate the moments analytically assuming a log�normal distribution for CN�B�

The result can be expected to be accurate only for jqj � �� since in this limit the moments

are dominated by the maximum of the distribution� which is well described by a Gaussian

shape� Within the Gaussian approximation we �nd�

hCq
N�Bi��q � exphlnCN�Bi exp

�



�
q���N

��
�
� jqj � 
� 
���

that has the form assumed in Eq� 
�
�� Indeed� using Eq� 

��� we obtain

�q � ��

�

 �




�
q��� N

������� �O
q��
�


���

which depends explicitely on q and

�q � �� 
���

which does not depend on q� For jqj � 
� the moments will depend sensitively on the tails

of the distribution which are not Gaussian in shape� and departures from the above results

can be expected�

Next� we studied the moments hCq
N�Bi��q for jqj � � numerically� and �tted them following

our ansatz Eq� 
�
� according to the expression










N
ln

h
hCq

N�Bi��q
i
�
lnBq

N
� ln�q �

�q � 

N

lnN� 
���

As one can see in Fig� �a� the �ts are quite satisfactory� Quantitatively� �q tends to increase

slightly as a function of q for q � �
� displaying a more pronounced dependence for q 	 �

where �q � 
� The pre�factors Bq turn out to be rather stable� varying in the range


��� 	 Bq 	 
��	 in a non�monotonous way� Regarding the �t values for �q� they are

consistent with the theoretical predictions expected for jqj � � in the case 
 � 
��� �q �

��

�q�
�
����� as shown in Fig� �b� For values q � �
� we found that �q � 
� corresponding

to backbones which are almost linear in shape� while for q � 
� corresponding to more

�compact� backbones� �q remained well below its value � for the square lattice�

According to these results we conclude that CN�B is likely to display multifractal behavior�

The multifractality is caused by the underlying multiplicative process characterized by an

in�nite hierarchy of e�ective coordination numbers �q� which depend on q� Note that the

term linear in q in Eq� 
��� would vanish for N � 	 if limN�� �
 	 
� In that case

the log�normal approximation would yield standard behavior� i�e� absence of multifractal

behavior asymptotically�

Finally� one can estimate values of the exponent gr� by assuming a �generalized� des

Cloizeaux expression 
cf� Eq� 
��� of the form

gr�
�� �� � 


�r
� 
�	�

Using our value �� � 
��� � ����� we �nd gr� � ���� � ����� in good agreement with the
numerical result Eq� 

���

V� CONCLUSIONS

We have studied structural properties of SAW on the backbone of percolation clusters

at criticality in two dimensions using an exact enumeration method� We �nd that the mean

end�to�end distance in 
�space� h�

N�i � N�� with �� � ���� � ���
� From this result we


�



obtain the exponent �r � ���dmin � ����	� ���
�� describing the corresponding behavior in
r�space� h�r
N�i � N�r �

We have calculated the distribution function of the end�to�end distance in r�space�

hPB
r�N�i� and found to be described by a scaling function of the variable x � r�N�r � as

rhPB
r�N�i �

�����
���	
xg

r
�
�dB

f for x 	 
�

xg
r
�
�dB

f exp
�a x�r� for x � 
�

Similarly� we have calculated the distribution hPB

� N�i in 
�space� obtaining the following
scaling behavior as a function of y � 
�N���


hPB

� N�i �

�����
���	
yg

�
�
�dB

� for y 	 
�

yg
�
�
�dB

� exp
�b y��� for y � 
�

The values of the corresponding critical exponents are reported in Table I�

Finally� we have studied the total number of SAW con�gurations of N steps� CN�B� These

numbers �uctuate strongly for di�erent backbone con�gurations� We �nd that lnCN�B is

approximately normally distributed having a width �N � �� N
���� where �� � ���������� To

characterize the �uctuations of CN�B more generally� we have studied the moments hCq
N�Bi��q�

where q is a parameter� Our results suggest that

hCq
N�Bi��q � Bq �

N
q N�q��

where �q are generalized e�ective coordination numbers of the backbone� �q generalized

enhancement exponents 
cf� Eq� 
��� and Bq pre�factors which depend weakly on q� Our

results suggest that 
 � �q � �� However� the question whether 
 � �q � � remains open�

Within a log�normal approximation for CN�B we �nd� for jqj � �� that �q � ��

 � q�������

consistent with our numerical results� In addition� the present results suggest that on the

backbone�

gr�
�� �� � 


�r

generalizing the des Cloizeaux expression g� � 
��
��� valid on regular lattices 
cf� Eq� 
����


�
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FIGURES

FIG	 �	 The total number of SAW con
gurations of N steps on the square lattice CN plot�

ted as �lnCN ��N versus N 	 The points correspond to the values of CN reported by Guttmann

and Wang ������� and Masand et al	 ������	 The continuous line is a 
t with the expression

�lnCN ��N � lnA�N 
 ln� 
 ��� � ���N � lnN � yielding � � ����� � ������ � � ���� � ���� and

A � ���� � ����	

FIG	 �	 SAW on percolation clusters at criticality	 �a� A percolation cluster on the square lattice

�light�grey squares� at the critical concentration pc �� ������� and its corresponding backbone

�dark�grey squares� between the seed S �open circle� and a site A at the last grown shell �full

circle�	 �b� The Euclidean and the chemical metrics on the backbone shown in �a�	 An arbitrary

backbone site B �full circle� can be characterized either by its Euclidean distance r or by its

chemical distance � from the seed S	 In this case� r �
p
�� and � � ��	 The line in white indicates

the minimal path from S to B	 �c� An SAW of N � �� steps ��� monomers� on the backbone

shown in �b�	 One end of the SAW is taken to be 
xed at the seed S and the other is taken at site

B	 The black line connecting the full circles �monomers� indicate the linear polymer	 This 
gure

illustrates the way in which the quantities r�N� and ��N� can be determined on the backbone	 In

this example� r���� �
p
�� and ����� � ��	

FIG	 �	 The mean end�to�end distance of SAW�chains on the backbone of percolation clusters

at criticality in two dimensions	 �a� h�r�N�i vs N � �b� h���N�i vs N and �c� the successive slopes

�� �full circles� and �r �full squares� vs ��N 	 Extrapolations of the points for ��N � � yield our

estimates �r � ���� � ���� and �� � ���� � ����	 The straight lines in �a� and �b� are drawn as a

guide and have the slopes �r � ���dmin � ����� and �� � ����� respectively	 Averages over � � ���

cluster con
gurations were performed	 For each cluster� all SAW�chains were obtained for N � ��	
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FIG	 �	 The structural function rhPB�r�N�i versus the scaling variable r�N�r � with �r � ������

for N � �� �full diamonds� and N � �� �full circles�	 Averages over � ���� backbone con
gurations

were performed	 The line in the range r�N�r 	 � has a slope gr� 
 dBf � ���� ���� and the one for

r�N�r 
 � is a 
t with Eq	 ����� yielding gr� 
 dBf � ���� ���� �r � ���� ��� and a � ���� � ����	

FIG	 �	 The structural function �hPB���N�i versus the scaling variable ��N�� � with �� � �����

for N � �� �full diamonds� and N � �� �full circles�	 Averages over � ���� backbone con
gurations

were performed	 The line in the range ��N�� 	 � has a slope g�� 
 dB� � ��� � ���� and the one for

��N�� 
 � is a 
t with Eq	 ����� yielding g�� 
 dB� � ����� ����� �� � ���� ��� and b � ����� ����	

FIG	 �	 Total number of SAW con
gurations� CN�B� on the backbone of percolation clusters in

d � � at criticality	 �a� The distribution of lnCN�B for N � �� and ��	 The lines are 
ts with the

form P �z� � ���
�N �
���� exp���z � �z�����
�N ��� where z � lnCN�B and �z � hlnCN�Bi	 �b� The

standard deviation 
N versus N 	 The straight line is a 
t with the form 
N � 
� N���� yielding


� � ����� ����	 Here� averages over ��� backbone con
gurations were performed	

FIG	 �	 �a� The quenched average hlnCN�Bi� plotted as ���N�hlnCN�Bi versus N 	 The continu�

ous line is the best 
t with Eq	 ���� yielding �� � ������������ �� � ��������� andB� � ���������	

�b� The annealed average hCN�Bi� plotted as ���N�hCN�Bi versus N 	 The continuous line is the

best 
t with Eq	 ���� yielding �� � ����� � ������ �� � ���� � ���� and B� � ���� � ����	

FIG	 �	 Generalized moments hCq
N�Bi��q for SAW on the backbone of percolation clusters in

d � � at criticality	 �a� The quantity ���N� ln
h
hCq

N�Bi��q
i
is plotted versus N � for q�� �top�� ��

�	�� �� ��	�� �� and �� �bottom�	 The lines are 
ts with Eq	 ����	 Some representative values for �q�

in addition to those reported in Fig	 �� are� ��� � ����� ��� � ���� and �� � ����	 Values of Bq

are found to �uctuate in the range �	����	��	 �b� The e�ective coordination numbers �q versus q

obtained in �a�	 The straight line is the theoretical result �q � ����
 q
������ expected for jqj � �

in the case � � ���� with �� � ����� and 
� � ����	
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TABLES

�� �r g�� gr� g�� gr�

���� � ���� ����� � ����� ���� � ���� ���� � ���� ���� � ���� ���� � ����

TABLE I	 Values of the critical exponents for SAW on the backbone of percolation clusters

at criticality in two dimensions	 The values for �r and gr� have been obtained from the relations

�r � ���dmin and gr� � g�� dmin� where dmin � ����������� �Herrmann and Stanley ����� Neumann

and Havlin �����	 The numerical values for the exponents �� and �r are consistent� within the

present accuracy� with the expressions �� � ���� � ��� and �r � ����� �r�� respectively	
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