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Abstract

The structure of linear polymers modelled by self-avoiding random walks
(SAW) on the backbone of two—dimensional percolation clusters at critical-
ity is studied. To this end, all possible SAW configurations of N steps on
a single backbone configuration are enumerated exactly, and averages over
many backbone configurations are performed to extract the mean quantities
of interest. We determine the critical exponents describing the structure of
SAW, both in Euclidean and topological space, and the corresponding mean
distribution functions for the end—to—end distance after N steps. A relation
between the exponents characterizing the asymptotic shape of these distri-
butions and those describing the total number of SAW of N steps on the

backbone is suggested and supported by numerical results.

Pacs: 5.40.4j, 61.41.+e, 61.43.Hy



I. INTRODUCTION

Linear polymers embedded in disordered media constitute one of the most challenging
problems in the physics of polymers. Indeed, this subject is relatively young as compared
to the more traditional and extensively studied one of linear polymers, modelled by self—
avoiding random walks (SAW), embedded in a regular system where no ‘external’ constraints
are imposed on the chains (Flory 1949, Fisher 1966, de Gennes 1979, Doi and Edwards 1986,
des Cloizeaux and Jannink 1990).

The study of linear polymers in a random medium is of practical interest for understand-
ing the transport properties of polymeric chains in porous media, such as in enhanced oil
recovery, gel electrophoresis, gel permeation chromatography, etc. (Doi and Edwards 1986,
Dullien 1979, Andrews 1986, Baumgéartner 1995). In this respect, it is useful to learn about
the static or conformational properties of linear chains in the presence of quenched disorder,
i.e. how the surrounding structural disorder influences their asymptotic shape. As a quite
general model of a random medium, percolation (Flory 1941, Stauffer and Aharony 1992,
Sahimi 1994, Bunde and Havlin 1996) represents the simplest and mostly used one.

The question of interest is whether the statistical behavior of SAW change in the presence
of structural disorder (modelled by lattice percolation clusters), with respect to their known
behavior on regular lattices. There is a quite general concensus that it is only at the
percolation threshold that non—trivial changes can be expected. In other words, the ‘critical’
exponents (to be defined below) describing the shape of SAW at the percolation threshold
are different than in the case of a regular lattice (Nakanishi 1994, Barat and Chakrabarti
1995).

In this work, we consider SAW on percolation clusters at criticality in two dimensions.
Since we aim at describing ‘infinitely’ long chains, we study them directly on the backbone
of the clusters, where dangling ends are absent on all length scales. More precisely, we
enumerate all possible SAW configurations of N steps for a single backbone, and then

avegrage over many different backbone configurations to extract the mean quantities of



interest. We determine the critical exponents describing the structure of SAW and the
corresponding mean distribution function for the end-to—end distance after N steps.

The paper is organized as follows. In Section II, we briefly review the main relevant
properties of SAW on regular lattices. In Section III, we describe the percolation model
employed and the corresponding backbone. In Section IV, we consider SAW on the backbone
of percolation clusters at criticality. The structural functions and the total number of SAW
configurations are obtained. Finally, in Section V we conclude with a brief summary of our

main results.

II. SAW ON REGULAR LATTICES

As a simple model for linear polymers in a good solvent we consider self-avoiding random
walks (SAW) on regular lattices in d dimensions. The structure and statistical properties
of SAW have been studied extensively in the past decades (for general reviews see e.g. de
Gennes 1979, des Cloizeaux and Jannink 1990). In what follows, we briefly review the main
known results relevant for our present study.

Consider SAW of N steps on a lattice. A quantity which characterizes the spatial exten-
sion of the chain can be obtained by calculating the end—to—end distance r(N). By averaging

r(N) over all possible N-steps walks one obtains
7(N) ~ N¥ (1)

where v is a universal exponent (independent of the lattice type and depends only on d) and
is given by v 2 3/(d + 2), for 1 < d < 4, as suggested by Flory (1949). Actually, the Flory
formula yields the exact result in one and two dimensions, and predicts the correct value for
the critical dimension, d = 4. Indeed, for d > 4, SAW become equivalent to simple random
walks (RW) and v = 1/2. In three dimensions, it agrees quite well with the best numerical
estimate, v = 0.592 £ 0.004 (Guttmann 1989).

Linear chains generated by SAW, which we refer to as SAW—chains, are random linear

fractals having a fractal dimension dy = 1/v (Havlin and D. Ben—Avraham 1987). For d > 4,
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the fractal dimension d; sticks at the value d; = 2 as for chains generated by simple random
walks, referred to as RW—chains.

A more detailed information about the spatial structure of SAW is given by the prob-
ability P(r, N) that after N steps the end—to—end distance of a SAW is equal to r. This

quantity obeys the scaling form (de Gennes 1979, des Cloizeaux and Jannink 1990)
1 14
P(r,N) = f(r/N") )

and is normalized according to [dr P(r, N) = 1. The analytic form of the scaling function

f(z) is known asymptotically
flz) ot r<l (3)

where g; = (7 —1)/v (des Cloizeaux 1974), v is the second universal exponent for SAW (see

below) and
f(z) ~ 2927 exp(—c 2°%), r>1 (4)

where go = ¢ [d(v —1/2) — (y —1)] (McKennzie and Moore 1971) and ¢ = 1/(1 — v) (Fisher
1966).
The critical exponent v (> 1) is related to the total number Cy of SAW configurations

of N steps by
Cy~ApYN N1 (5)

where 1 is the effective coordination number of the lattice and is not universal, and A is
a constant. Numerical results yield g = 2.6385 4+ 0.0001 for the square lattice (Guttmann
and Wang 1991, Masand, Wilensky, Massar, and Redner 1992). The fact that ;4 < 3 means
that the self-avoiding condition imposes further constraints to the walks in addition to the
obvious one that the walk can not make a step to the direction where it just comes from.
The latter would yield i = 2d — 1 for hypercubic lattices.

The self-avoiding condition thus reduces dramatically the value of C'y as compared to the

case of simple walks for which ; = 2d on hypercubic lattices, yielding simultaneously a small
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enhancement factor N7~!. For dimensions d > 4, however, v = 1 since the excluded-volume
restriction becomes irrelevant above the critical dimension.

The exponent v is known exactly for d = 2, v = 43/32 (Niehnhuis 1982). A good
approximation for v has been suggested recently, v = 14 (4—d)/6,for 1 <d < 4,and vy =1
for d > 4 (Roman 1995). This expression agrees remarkably well with the suggested exact
value in d = 2, and with the best numerical estimates presently available, i.e. v = 1.33+£0.02
in d =2 (Woo and Lee 1991), and v = 1.161 + 0.001 in d = 3 (Guttmann 1989).

As we will see below, it is useful to study the behavior of the quantity (InCy)/N when
considering polymers embedded in a disordered medium. It is therefore instructive to study
the same quantity in the case of a regular lattice. We consider here the square lattice for
which exact enumeration results for Cy are available so far for N < 34 (Guttmann and
Wang 1991, Masand et al. 1992). Using these values, we have plotted (InCy)/N versus N
as shown in Fig. 1. The continuous line corresponds to a numerical fit obtained in the range

10 < N < 34 with the expression

1 In A v—1
—1 =—+1
NnCN N +1Inp+ N

In N (6)

yielding p = 2.641 £+ 0.010, v = 1.30 £+ 0.05 and A = 1.35 + 0.05. Thus, compared to the
asymptotic values p = 2.6385 + 0.0001 and v = 43/32, our fit values differ by less than
0.09% from p and by about 3% from -, respectively.

We proceed by describing the underlying random structure in which SAW will be em-
bedded.

III. THE BACKBONE OF A PERCOLATION CLUSTER

Consider now the case in which the linear polymers are embedded in a random medium.
In our simplified lattice model, this corresponds to having randomly sites which are blocked,
i.e. are not available to the SAW. The natural model in this case is percolation (Flory 1941,

Stauffer and Aharony 1992, Sahimi 1994, Bunde and Havlin 1996).



In our calculations we consider a square lattice of unit lattice constant, and generate large
percolation clusters using the Leath growth method (Leath 1976, Alexandrowics 1980). The
growth starts at the seed (origin of coordinates), whose nearest—neighbor sites can be either
occupied with probability p (they become cluster sites), or blocked (they can not be occupied
later) with probability 1 — p. Thus, in the first grow step sites which are at distance r = 1
from the seed can be occupied. It is customary to refer to them as belonging to the first
grow ‘shell’. In the second step, the growth starts again from each of the sites at the first
shell. Then, sites which are at distance r =2 or r = V2 can be occupied. The new cluster
sites generated in this second growth step belong to the second shell. We say that they are
at the ‘chemical’ distance ¢ = 2 from the seed. Repeating this process again and again from
the last shell of cluster sites, one can generate large percolation clusters up to the maximum
number of shells required. Note that the cluster sites belonging to a given shell are at the
same chemical distance ¢ from the seed, while their corresponding FEuclidean distances r
from the seed can be very different from each other.

Since we aim at describing infinitely long SAW-chains on a percolation cluster, we can
disregard the singly connected substructures, i.e., dangling ends, from the cluster where long
SAW-—chains can get stuck. Thus, we are confronted with the determination of the backbone
of the cluster. Once a percolation cluster having the required maximum number of shells
has been generated, we take one of the sites at the last grown shell at random, say site A,
and determine the backbone of the cluster between A and the seed (Herrmann, Hong, and
Stanley 1984, Porto, Bunde, Havlin, and Roman 1997) (Fig. 2a).

Before proceeding with our discussion on SAW, we review some of the basic structural
properties of the backbone at the critical concentration p.. Fig. 2b illustrates the two
possible metrics which can be defined on the backbone for an arbitrary backbone site B, i.e.
its Euclidean distance r and its chemical distance ¢ from the seed. On average, the mean
chemical distance of backbone sites at distance r from the seed scales as (Pike and Stanley

1981, Havlin and Ben—Avraham 1987)



(0) ~ )

where dpi, = 1.130 4 0.004 in two dimensions (Herrmann and Stanley 1988, Neumann and
Havlin 1988). Thus, Eq. (7) yields the scaling relation between the two metrics, which will be
used in the following section. Finally, the backbone has a fractal dimension dj} = 1.4540.01

in (~space, yielding the value d} = dj’dmin = 1.64 £ 0.02 in 7—space (Porto et al. 1997).

IV. SAW ON THE BACKBONE OF PERCOLATION

Now consider SAW on the backbone of a percolation cluster (Fig. 2¢). For convenience,
we study the case in which one end of the SAW is kept fixed at the seed. After N steps, the
SAW-—chain reaches a backbone site located at Euclidean distance r and chemical distance ¢

from the seed, yielding the end-to—end distances r(IN) and ¢(N), respectively (see Fig. 2¢).

A. The critical exponents v, and v,

By considering all SAW-chains of N steps on the given backbone, we obtain the av-
erage quantities 7(N) and £(N), respectively. A second average over different backbone

configurations yields the final quantities,

(F(N)) ~ N*™ (8)
and

({(N)) ~ N (9)

where, according to Eq. (7), the critical exponents v, and v, are related to each other by

Uy

dmin

Vyp =

(10)

It is now generally accepted that at the percolation threshold p., SAW belong to a

different universality class than for regular lattices. It is found that in d = 2, the value of



v, is definitely larger than v (Nakanishi 1994, Barat and Chakrabarti 1995). Some authors
conclude that v, = 0.76 £+ 0.08 (Meir and Harris 1989), v, = 0.77 + 0.02 (Roman, Dréger,
Bunde, Havlin, and Stauffer 1995), v, = 0.77 4+ 0.01 (Woo and Lee 1991, Vanderzande and
Komoda 1992) and v, = 0.775 4+ 0.005 (Rintoul, Moon, and Nakanishi 1994), while others
have proposed slightly larger values, i.e. v, = 0.78 + 0.01 (Nakanishi and Moon 1992) and
v, = 0.783 £ 0.003 (Grassberger 1993). Away from p., it is believed that the standard
universality class is recovered, i.e. v, = v for p > p, (Nakanishi 1994, Barat and Chakrabarti
1995).

Our numerical results for (7(N)) and (¢(N)) are reported in Fig. 3, from which we obtain
v, = 0.78 £0.02, and vy = 0.89 £ 0.01. (11)

From the result for v, and the relation Eq. (10) we obtain a better estimate for v, as

Vg

= 0.786 = 0.010. (12)

VT‘ =
min

This result is in good agreement with the values reported by Nakanishi and Moon (1992),
and Grassberger (1993). We proceed with the discussion of the end—to—end distribution

functions both in 7— and in /—space.

B. The structural functions Pg(r, N) and Pg(¢, N)

For each backbone, we consider again all possible SAW—chains of N steps and determine
the probability Pg(r, N) that the Nth step reaches a backbone site at a distance r from the
seed. By performing a configurational average over many backbone configurations we obtain
the quantity (Pg(r, N)), which is plotted in Fig. 4.

We find that (Pg(r, N)) is a scaling function of the variable z = r/N"", i.e.
1
(Palr, V) =+ fi(a),

in agreement with a previous work (Roman et al. 1995). The numerical results suggest the

following form for fg(x),



fo(x) ~ 2% <t (13)

and

B

fa(x) ~ 2z exp[—a 2], x> 1. (14)

We obtain, g7 +d% = 2.2+0.2, g5 +d% = 3.14+0.4, and §, = 4.940.3, the latter is consistent
with the value 0, = 1/(1 — v,) = 4.7+ 0.2. Using the value d} = 1.64 4 0.02 we find,
¢r = 0.56 £ 0.20 and g5 = 1.46 = 0.40.

More accurate are the results for the structural function in /—space, (Pg(¢, N)). These

are shown in Fig. 5, suggesting the following scaling behavior as a function of //N"* (Roman

et al. 1995)
1[0\
(PB(E,N)>~Z(NW> . YN*<1 (15)
and
1[0\
e~ g () el AL s (16

and is normalized according to [ d¢ (Ps(¢, N)) = 1. We obtain gt +df = 1.940.1, g +d? =
2.85 £ 0.40, and §, = 9.5 £ 0.5, the latter is consistent with the result §, = 1/(1 — 1) =
9.09 £ 0.90. Using the value d¥ = 1.45+0.01 we find, g¢ = 0.45+0.10 and g5 = 1.40 £ 0.40.

Actually, the values for g¢ and g7 are related to each other by (Roman et al. 1995)
91 = gf Amin (17)

yielding the better estimate ¢gi = 0.51 + 0.10.

C. The total number of configurations Cy

In the following, we try to relate the exponent g] to other critical exponents describing
SAW on the backbone, similarly as for regular systems (see Eq. (3)). This leads us to study

the total number of SAW configurations on the backbone, Cy g.
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Due to the disordered structure of the backbone, the number Cy 5 can fluctuate strongly
among different backbone configurations. A better behaved quantity is In Cy g, hence we
consider first the ‘quenched’ average (InCy ). Indeed, the values of InCy p are approx-
imately normally distributed, as indicated in Fig. 6a. The width of the distribution, oy,

grows as a power of N as shown in Fig. 6b, as
on = oy N* (18)

with og = 0.45 £ 0.02 and x seems to tend to y = 1/2 for large N.
Our numerical results further indicate that the location of the maximum of the Gaussian,

i.e. (InCyp), can be well described by the analytic form

In BO
N

1

N (ln CN,B> ==

-1
+ In pp + %TIHN (19)

as shown in Fig. 7a. The fit yields the values py = 1.456 + 0.01, vy = 1.26 + 0.05 and
By = 1.26 +0.05. Our value for y agrees well with the result pyc = 1.459+ 0.003 obtained
by generating SAW with Monte Carlo methods (Woo and Lee 1991). In the latter case, the
most probable SAW configurations are actually generated, which correspond to our quenched
average results. Our value for v, is also consistent with yyc = 1.31 4+ 0.03 (Woo and Lee
1991).

Let us consider next the annealed average, i.e. (Cnp). A good fit to the numerical

results is obtained with the expression

In Bl

N

7 —1

1
N In [(Cng)] = +1Inp + In N (20)

yielding p; = 1.565 £ 0.01, v = 1.34 £ 0.05 and B; = 1.24 £+ 0.05, as shown in Fig. 7b.
It is interesting to note that our value for p; is consistent with the suggested annealed
result fiann = pe i, where p. = 0.59274 and p = 2.6385 (Harris 1983, Woo and Lee 1991,
Grassberger 1993).

To characterize the fluctuations of C'x g between different backbone configurations more

generally, we study the moments (C]‘{,’BV/ 7 where ¢ is a parameter. A similar study has
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been performed for ‘ideal’ chains, i.e. chains which can intersect themselves, on percolation
clusters at criticality. This model leads also to non-trivial results (Giacometti and Maritan

1994). Tt is easy to show that the quenched average can be obtained as
(InCyp) = lim In [(Chs)'] .
To proceed further, we make the ansatz
(CRp)"® ~ By gt N7 (21)

which is a generalization of Eq. (5), where 11, are generalized effective coordination numbers
of the backbone and v, generalized enhancement exponents. In the following, we study
Eq. (21) both analytically and numerically.

First, we evaluate the moments analytically assuming a log-normal distribution for Cy g.
The result can be expected to be accurate only for |¢| — 0, since in this limit the moments
are dominated by the maximum of the distribution, which is well described by a Gaussian

shape. Within the Gaussian approximation we find,
1
(Chn) /1 = explinCrv) exp (00iN™) ol <1, (22)
that has the form assumed in Eq. (21). Indeed, using Eq. (19), we obtain

1
Mzuo@+§wﬁNﬂﬁw+OWﬁ (23)

which depends explicitely on ¢ and

Yg = Yo (24)

which does not depend on ¢. For |¢| > 1, the moments will depend sensitively on the tails
of the distribution which are not Gaussian in shape, and departures from the above results
can be expected.

Next, we studied the moments (Cf; )/ for |¢| < 2 numerically, and fitted them following

our ansatz Eq. (21) according to the expression
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1 ¢ \1/ _ InB, Y — 1
S [(Chs) q]—T+lnuq+ . (25)

As one can see in Fig. 8a, the fits are quite satisfactory. Quantitatively, v, tends to increase
slightly as a function of ¢ for ¢ > —1, displaying a more pronounced dependence for ¢ < —1
where v, — 1. The pre-factors B, turn out to be rather stable, varying in the range
1.24 < B, < 1.26 in a non-monotonous way. Regarding the fit values for s, they are
consistent with the theoretical predictions expected for |¢| — 0 in the case x = 1/2, p, =
to(14+qo?/2), as shown in Fig. 8b. For values ¢ < —1, we found that p, — 1, corresponding
to backbones which are almost linear in shape, while for ¢ > 1, corresponding to more
‘compact’ backbones, i, remained well below its value 1 for the square lattice.

According to these results we conclude that C'y g is likely to display multifractal behavior.
The multifractality is caused by the underlying multiplicative process characterized by an
infinite hierarchy of effective coordination numbers i, which depend on ¢. Note that the
term linear in ¢ in Eq. (23) would vanish for N — oo if limy_,o 2y < 1. In that case
the log—normal approximation would yield standard behavior, i.e. absence of multifractal
behavior asymptotically.

Finally, one can estimate values of the exponent ¢g] by assuming a ‘generalized’ des

Cloizeaux expression (cf. Eq. (3)) of the form

r v 71_1
91 = . (26)

Vy

Using our value 7, = 1.34 £+ 0.05, we find g] = 0.43 £ 0.05, in good agreement with the

numerical result Eq. (17).

V. CONCLUSIONS

We have studied structural properties of SAW on the backbone of percolation clusters
at criticality in two dimensions using an exact enumeration method. We find that the mean

end-to—end distance in /-space, (((N)) ~ N"¢ with v, = 0.89 4 0.01. From this result we
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obtain the exponent v, = vp/dmin = 0.786 + 0.010, describing the corresponding behavior in
r-space, (F(N)) ~ N".
We have calculated the distribution function of the end-to—end distance in r—space,

(Pg(r,N)), and found to be described by a scaling function of the variable z = r/N"", as

29t df for x < 1,
r(Ps(r, N)) ~
T B
291 exp(—a %) for z > 1.

Similarly, we have calculated the distribution (Pg(¢, N)) in {-space, obtaining the following

scaling behavior as a function of y = ¢/N",

{+dBD

yIt for y < 1,

((Pg(¢,N)) ~
Yy Hde exp(—b %) fory > 1,
The values of the corresponding critical exponents are reported in Table I.
Finally, we have studied the total number of SAW configurations of N steps, C'y g. These
numbers fluctuate strongly for different backbone configurations. We find that InCy is
approximately normally distributed having a width oy ~ 0y N'/2, where 0y = 0.4540.02. To

characterize the fluctuations of C'y g more generally, we have studied the moments (C}, N.B ),

where ¢ is a parameter. Our results suggest that
(CJqV,B>1/q ~ By Mév Nt

where pi, are generalized effective coordination numbers of the backbone, 7, generalized
enhancement exponents (cf. Eq. (5)) and B, pre-factors which depend weakly on ¢. Our
results suggest that 1 < p, < p. However, the question whether 1 < v, < v remains open.
Within a log-normal approximation for Cy g we find, for |¢| — 0, that p, = po(1 + qoa/2),
consistent with our numerical results. In addition, the present results suggest that on the

backbone,

n-1
9=
generalizing the des Cloizeaux expression g; = (y—1)/v valid on regular lattices (cf. Eq. (3)).
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FIGURES
FIG. 1. The total number of SAW configurations of N steps on the square lattice Cy plot-

ted as (InCy)/N versus N. The points correspond to the values of Cy reported by Guttmann
and Wang (1991), and Masand et al. (1992). The continuous line is a fit with the expression
(InCy)/N =InA/N +1Inp+ [(y — 1)/N]In N, yielding p = 2.641 £ 0.010, v = 1.30 & 0.05 and

A =1.35+£0.05.

FIG. 2. SAW on percolation clusters at criticality. (a) A percolation cluster on the square lattice
(light-grey squares) at the critical concentration p. = 0.59274 and its corresponding backbone
(dark-grey squares) between the seed S (open circle) and a site A at the last grown shell (full
circle). (b) The Euclidean and the chemical metrics on the backbone shown in (a). An arbitrary
backbone site B (full circle) can be characterized either by its Euclidean distance r or by its
chemical distance ¢ from the seed S. In this case, r = V50 and ¢ = 12. The line in white indicates
the minimal path from S to B. (c) An SAW of N = 20 steps (21 monomers) on the backbone
shown in (b). One end of the SAW is taken to be fixed at the seed S and the other is taken at site
B. The black line connecting the full circles (monomers) indicate the linear polymer. This figure
illustrates the way in which the quantities (N) and £(N) can be determined on the backbone. In

this example, 7(20) = v/50 and £(20) = 12.

FIG. 3. The mean end—to—end distance of SAW—chains on the backbone of percolation clusters
at criticality in two dimensions. (a) (F(N)) vs N, (b) (/(N)) vs N and (c) the successive slopes
vg (full circles) and v, (full squares) vs 1/N. Extrapolations of the points for 1/N — 0 yield our
estimates v, = 0.78 &+ 0.02 and vy = 0.89 + 0.01. The straight lines in (a) and (b) are drawn as a
guide and have the slopes v, = vp/dmin = 0.786 and v, = 0.89, respectively. Averages over 5 - 10*

cluster configurations were performed. For each cluster, all SAW—chains were obtained for N < 30.
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FIG. 4. The structural function r(Pg(r, N)) versus the scaling variable r/N*r | with v, = 0.786,
for N = 39 (full diamonds) and N = 40 (full circles). Averages over 5-10* backbone configurations
were performed. The line in the range r/N"" < 1 has a slope g} + d? = 2.2+ 0.2, and the one for

r/N" > 1is a fit with Eq. (14), yielding g} + d} = 3.1+0.4, §, = 4.9+ 0.3 and a = 0.79 + 0.02.

FIG. 5. The structural function ¢(Pg(¢, N)) versus the scaling variable //N"t, with v, = 0.89,
for N = 39 (full diamonds) and N = 40 (full circles). Averages over 5-10* backbone configurations
were performed. The line in the range //N"¢ < 1 has a slope g{ + d? = 1.9+ 0.1, and the one for

¢/NVt > 1 is a fit with Eq. (16), yielding ¢4 + dB = 2.85 +0.40, d; = 9.5 +0.5 and b = 0.09 % 0.02.

FIG. 6. Total number of SAW configurations, C'y g, on the backbone of percolation clusters in
d = 2 at criticality. (a) The distribution of InCy g for N = 10 and 40. The lines are fits with the
form P(z) = (2m0%,) Y2 exp[—(z — 2)?/(20%)], where z = InCy g and Z = (InCyg). (b) The
standard deviation oy versus N. The straight line is a fit with the form oxy = g9 N 1/ 2 yielding

o = 0.45 4 0.02. Here, averages over 10° backbone configurations were performed.

FIG. 7. (a) The quenched average (In C'y ), plotted as (1/N)(In Cy ) versus N. The continu-
ous line is the best fit with Eq. (19) yielding o = 1.456+£0.010, o = 1.26+0.05 and By = 1.26+-0.05.
(b) The annealed average (Cn ), plotted as (1/N)(Cnp) versus N. The continuous line is the

best fit with Eq. (20) yielding 1 = 1.565 =+ 0.010, ; = 1.34 + 0.05 and B; = 1.24 =+ 0.05.

FIG. 8. Generalized moments (C?V,B)l/ 7 for SAW on the backbone of percolation clusters in
d = 2 at criticality. (a) The quantity (1/N)In [(C]'{,’B)I/q] is plotted versus N, for ¢=2 (top), 1,
0.5, 0, -0.5, -1 and -2 (bottom). The lines are fits with Eq. (25). Some representative values for -y,
in addition to those reported in Fig. 7, are: y_9 = 1.15, y_; = 1.25 and 2 = 1.36. Values of B,
are found to fluctuate in the range 1.24-1.26. (b) The effective coordination numbers j, versus ¢
obtained in (a). The straight line is the theoretical result u, = po(1+ gof/2), expected for |g| — 0

in the case x = 1/2, with py = 1.456 and oy = 0.45.
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TABLES

r

Vi Vi
1 ‘ ‘ g2

Vy ‘ Ur ‘ g1 ‘ g1 gs

0.89 + 0.01‘ 0.786 £ 0.010‘ 0.45 £ 0.10‘ 0.51 £ 0.10‘ 1.40 + 0.40‘ 1.46 +0.40

TABLE I. Values of the critical exponents for SAW on the backbone of percolation clusters
at criticality in two dimensions. The values for v, and g7 have been obtained from the relations
Uy = Vg/dmin and ¢} = ¢} dpin, where dpin = 1.13040.004 (Herrmann and Stanley 1988, Neumann
and Havlin 1988). The numerical values for the exponents §; and 0, are consistent, within the

present accuracy, with the expressions ¢y = 1/(1 — vy) and §, = 1/(1 — 1), respectively.
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