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Anderson localization in a correlated landscape near the
band edge
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ABSTRACT
We study the Anderson localization in a potential landscape with long-range
power-law correlations in one dimension. We find that, for energies E close to the
band edge of the unperturbed energy band, the presence of correlations makes the
states more strongly localized, compared with the uncorrelated case, and a novel
scaling of the localization length appears.

It is well known that the states of the one-dimensional Schrodinger equation in
a random potential are usually localized (Borland 1963, Halperin 1965). These
results have been found for random potentials without correlations between sites
(Kappus and Wegner 1981, Gardner et al. 1984). It is generally believed that loca-
lization does not crucially depend on the local details or on short-range correla-
tions.

Long-range power-law correlations of a local property appear to be common in
nature. They have been found in biological systems such as the deoxyribonucleic acid
sequences (Peng er al. 1992) and in physical systems, for example in porous media
(Ischenko 1992, Vidales et al. 1996).

Here we study the effects of long-range spatial correlations in the random
potentials on the localization properties of the states for energies close to the band
edge of the unperturbed system and show that they modify the scaling of the loca-
lization length.

We study the tight-binding Anderson model with diagonal disorder on one-

dimensional lattices:
¢n+1 + %4 - 2¢n + /\an/)n - (E - 2)1/1117 (1)

with random V,, distributed uniformly in the interval [—1,1] and A being a
positive constant, which describes the amplitude of the disorder. The energy E
is a fixed parameter and we choose the local potentials to obey the correlation
function C(¢) with a long-range power-law behaviour of the form (Makse et al.

1996)
Clt) = Vo) < (1 + 8P oct™  for £ 1. (2)

Equation (1) can be written in terms of 2 x 2 matrices:
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The localization length can be defined by (Derrida and Gardner 1984, Kramer and

MacKinnon 1993)
. 1
A(£,0) " = lim {N log (ﬂﬂ (4)

where A(E, /\)*] measures the exponential increases in ,,.
The ratio ¥y /1 in the imit N — oo 1s related to the eigenvalues of the product

matrix (Derrida et al. 1987)

MY = INI M,  with | MV r’ﬂ = VN“J (5)

n=1 ! 7700 QpN
At the band edge £ = 2, where the relevant length scales are large, one can
obtain the A dependence of the localization length A(E = 2,\) by the following
space decimation procedure. For blocks of b sites one redefines the potential in

equation (1) by the mean value over the block:
Vi~ > Ve (6)
b

The long-range correlation described by equation (2) leads to the following scaling of
the second moment of the potential:

(V) — (Vi) o b*71{(12). (7)
Since space is rescaled by a factor b, the expression
Uit + Uyt — 2y (9)
transforms into
7+ = 20, (10)

The next stage is transforming the equation for the block variables to a form iden-
tical with the original equation (equation (1)). We obtain this by transforming
A — A\, = b\ and find that

Mo(Vi) ~ BTNV, (11)
Assuming a power-law singularity for A at £ = 2 given by
A(E=2,0) ~ (M)~ (12)
and with
A .

we derive using equations (11) and (13)
y= . (14)

Note that for v > 1
(Vi) o< (V?) (15)
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so that one recovers the exponent y = ‘; which was derived earlier for random
systems (Derrida and Gardner 1984). Close to £ =2, the above scaling can be
generalized using (Russ et al. 1997) -
A(E,N) .
= £(, 16

where
(2-E)

(/\2 < V2>)2/(4—‘/) !

(17)

X =

and f(0) = constant.

Our scaling theory is supported by numerical calculations. We generate corre-
lated one-dimensional sequences of size (equal to number of particles) N = 2'7 using
the Makse et al. (1996) method and compute the localization lengths A(E, A), asso-
ciated with the eigenvalues of the product of random matrices. In figure I we show
the scaling of the localization length A with A({ V2>1/2 in the case £ = 2 (equation (12))
on a double-logarithmic plot for randomly distributed chains and for correlated
chains with correlation exponents v = 0.1 and 0.9. The resulting curves are straight
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Figure 1. We plot A against )\<V2>1/2 in a double-logarithmic scale for £ = 2 for different
values of the correlation exponent v = 0.1 ({1), 0.9 (A) and for randomly distributed
chains (O). The averages over 1/4 were performed over 100 systems of length 2'7. The
resulting curves are straight lines with the slopes close to —2/3 for the random case
and close to —0.51 for v = 0.1 and to —0.65 for v = 0.9 in the correlated cases, in
accordance with the theory.



1452 S. Russ er al.

10
T
N
=
o™
=
=
<

10"

10"102 o

(2 — E)\~4/(4~7)
(@)

107
o
&
=~
=
<

10’ .

10° L : —

10 10
(2 —E)A~4/3
()

Figure 2. Plot of the scaling function for 1.9 < E < 2 (cf. equation (16) and (17)). The average
over 1 /4 was performed over 100 systems of length 2'7. The different symbols are for
different energies £ = 1.98 (0, @, Q), E =196 (0, @, (1), E =194 (0, ¢, ), E =192
(r, A, A), and £=190 (v,¥,%V/). We varied the amplitude of disorder X\ in the
interval [0.5,1.0] in the correlated case and in [0.2,0.4] in the random case, corre-
spondm% to about the same range of A(V?). In (a), the correlated case, we plot

) against (2 — E)/AYED: (0), (@), (O). (A), (V) data for 7= 0.1;
(0) (l) (#), (A), (W), data for v = 0.3; (o), (0, (o), (A) (V) data for v = 0.5. In
(b), the random case, we plot A(E)AY> against (2 — E)/A*°
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lines with slopes close to —2/3 for the random case and close to —2/(4 — 7) in the
correlated cases, in accordance with the theory. These results mean that, the more
correlated the random potential, the stronger is the localization. Thus states of
random chains are less localized than those of correlated chains at the band edge.
It 1s clear from equations (7) and (12) that at the band edge the presence of long-
range correlations makes the localization more pronounced than in the random case.,
The main reason for this effect is the strong enhancement of long-wavelength fluc-
tuations of the potential, responsible for localization near E = 2.

Figure 2 shows the scaling for £ < 2: In figure 2 (a), the correlated case, we plot
AN against (2 — E)/X*% for v = 0.1,0.3 and 0.5. In figure 2 (), the random
case, we plot AN’ against (2 — E)/X*?. The data collapse supports the scaling
assumptions (16) and (17). We find data collapse for £ < 1.9, A > 0.5, in the cor-
related case and a gradually breakdown of the scaling assumption if we leave this
regime.

In summary we have shown that, close to the edge of the unperturbed energy
band, the presence of correlations makes the states more strongly localized.
This counterintuitive effect is related to the statistics of sums of correlated random
variables. We find a new scaling for the localization length by using decimation
arguments, which fit very well with the numerical results.
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