On controlled diffusion-limited drug release from a leaky matrix
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How fast can drug molecules randomly escape from a polymer matrix? This important question is
of both scientific and practical importance, as increasing emphasis is placed on design
considerations that can be addressed only if the physics of drug release is better understood. We
study this problem using high accuracy Monte Carlo computer simulations. We find that the
nature of drug release depends drastically on the dimension of the matrix and is different
depending on whether the matrix is a normal Euclidean space or a fractal material such as a
polymer, corresponding to the fact that the basic laws of physics are quite different in a fractal
environment. We also find the surprising result that drug release is the same for noninteracting
particles as it is for particles with hard-core excluded volume interactions, suggesting that the

nature of the matrix is more important than the nature of the interactions among the drug

particles in determining drug release.

I. INTRODUCTION

During the last decade there has been great interest in
developing systems for controlled delivery of drugs and oth-
er bioactive substances.'” Many schemes have been devised,
several of which involve diffusion of the bioactive material
out of an inert polymer matrix within which it initially has
been dispersed. The simplest of these utilize uncoated poly-
mer matrices containing the embedded drug.® Other tech-
niques involve covering most of the matrix with an imperme-
able material that acts as a barrier to diffusion, and the active
substance escapes through surface pores or cavities that are
left uncoated.”*

Anunderstanding of controlled drug release requires, as
a prerequisite, a theory of how the escape rate depends on the
size and geometry of the uncoated surface and also how it
depends on the dimension, size, and structure of the polymer
matrix. To this end, we studied several models of drug re-
lease. We describe Monte Carlo computer simulations of dif-
fusion for three cases. Our purpose here is to discuss general
features of these models and to present results of the simula-
tions. We find that there are well-defined scaling laws whose
specific form depends on the model in question.

The simplest model for a drug release system is a
L XL XL cubic box with a single square hole or “absorbing
patch” of size/ X /. These are thus two independent variables
that can be changed systematically, L and /. Our goal is to
calculate the drug release rate Q =dQ /dt = Q(L,l). The
drug particles are generally presumed to move by diffusion
on a lattice and when a drug particle reaches the hole, release
occurs. We also consider a more sophisticated model in
which the Euclidean lattice is replaced by a fractal polymer
matrix.” This is motivated by the fact that real polymers
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involve conformations that can be of noninteger dimension
(e-g., a swollen chain has fractal dimension d , = 5/3).% For
the sake of specificity, we consider here the percolation mod-
el for polymer gelation,’ for which d r=91/48 = 1.896 in
two dimensions.

For both the regular lattice and the fractal matrix mod-
el, we studied two cases: {i) the ideal case where the diffusing
particles do not interact with one another; and (ii) a more
realistic case where the diffusing particles interact by means
of a hard core interaction.

DRUG RELEASE FROM ONE-, TWO-, AND THREE-
DIMENSIONAL MATRICES: MODEL 1

We first consider a three-dimensional lattice in the form
of a cube with L * sites. We next specify the size / X/ of the
absorbing patch that occurs on the surface, which can range
from a single site {/ = 1) to the entire surface ({2~ L ?). Next,
we randomly choose sites, excluding absorbing or “leak”
sites. We occupy them with particles, avoiding double occu-
pancy, until a fixed initial drug concentration is reached.
The diffusive escape process is simulated by selecting a parti-
cle at random and moving it to a randomly selected nearest
neighbor site. If this site is outside the system, the move is
always rejected. If this site is already occupied, there are two
possibilities: (i} for hard core interactions the move is reject-
ed; (i) for noninteracting particles the move is allowed so
that more than one particle can occupy the same site. A
particle is removed from the lattice as soon as it migrates toa
site lying within the leak.

After each trial, the time is incremented. The increment
is chosen to be 1/N,, where N, is the number of particles
remaining in the system, since the unit time characterizing
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FIG. 1. Escape rate Q vs ¢ for an L = 20 box with a surface leak of size / X/,
for various values of . The curve designated by { X X X} pertains to the case
where the entire boundary of the box is leaky, i.e., where the leak consists of
all six sides of the box. The initial concentration is ¢ = 0.5 for all curves.

this system is the mean time required for every one of the ¥,
particles to be offered the possibility of moving one step. We
then count the number of particles diffusing into the leak in
the time between 7 and 7 + 1 and denote this quantity by
Q = dQ /dt,where Q {t ) is the number of particles that diffuse
into the leak up to time ¢. Typically we consider ¢ ranging up
to 2000 time steps and we average Q over 10° runs.

Figure 1 shows, for hard core interactions, the escape
rate as a function of time for a cube of size 20X 2020 for
several leak sizes / = 1, 2, 8, 16, 20. In each case the initial
concentration of diffusing particles per lattice point ¢ is cho-
sen to be ¢ = 0.5. We find that for large ¢, Qs given approxi-
mately as Q (¢t ) ~exp( — I't ), where I' increases as the size of
the leak increases. The results were essentially identical for
the interacting and noninteracting cases, a finding consistent
with recent observations on similar two-dimensional lattice
models for drug escape.® In fact, it can be shown rigorously
(see the Appendix) that the form of the time evolution of Q (¢)
is identical for interacting and nondistinguishable hard core
particles, regardless of the size of the leak and the geometry
of the lattice. In contrast, when we have a mixture of differ-
ent types of particles, where one type can escape and the
other cannot, the hard core interaction influences the escape
rate. In d = 2 and d = 3 mainly the amplitude of the rate is
changed, while in d = 1 a characteristic new time depen-
dence is observed.®!°

In Fig. 2(a) we show T" for ¢ = 0.5, computed from the
data given in Fig. 1, as a function of /L, for L = 10, 15, and
20. In Fig. 2(b), we show these data plotted in scaled form,
namely L°T" vs / /L. From the remarkable degree of data
collapse, it is apparent that I'(L,/ } obeys the scaling equation

O(LJ)=L%h(l/L). (1)
Therefore we can describe the escape of diffusing particles
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FIG.2.(a)T =dIn Q/dtvsi/L,for L = 20(®), L = 15(O),and L = 10((}}.
(b} The same data of part (a), except plotted in a form designed to test the
scaling equation (1), 7%I" vs / /L. We observe that the data “collapse” onto a
single curve supports general scaling ideas.

from three-dimensional boxes of length L with a leak of
length / by

Qft)~exp[ — (@t /LY (I /L)]. ()
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FIG. 3. Escape rate  vs ¢ for one randomly chosen hole. Comparison of
rates in different dimensions [d = 1: L = 50 (@) and L = 100 (O); d = 2:
L=50(A)and L =100 (A); d=3: L =10 (M) and L =20 {{}. Initial
concentration is ¢ = 0.5,

The coefficient « has the physical units of a diffusion con-
stant.

Over much of its range, the function 4 (x) is found to be
linearinx=1/L,ie.,

h(/L)~I/L. 3)

Therefore, if we fix the absolute size of the leak, but change
the container size L, the first order release rate I'==d (In Q )/
dt varies approximately as " ~ L ~3. This is the theoretically
expected result. On the other hand, it variesas '~ L ~?if the
ratio / /L is held fixed. Note that the slope of 4 {x} decreases
strongly if x tends to O or 1. For fixed L the release rate
remains practically constant for / <0.1L or /> 0.9L. In con-
trast to the dependence shown in Eq. (3), the first order re-
lease rate for similar two-dimensional models was found® to
scale as /%7 . Thus the exponent depends on the dimensiona-
lity of the system, as in the case for exponents in critical
phenomena.'!

Equation (2) holds for large times, while for small times
the release rate seems to follow a power law. For example,
for I =L, we find Q(¢)~t —"/% The crossover time above
which Q is determined by Eq. (2) decreases with decreasing
size of the leak and seems to approach zero for/ /L — 0, asis
clear in Fig. 3.

What is the dependence of the release rates on the ma-
trix dimension d? To answer this question, we studied d-
dimensional cubes containing orne hole, chosen randomly.
Our analysis {Fig. 3) shows that

O~ faltexpl — ey (L)t /L7, 4)
where a,(L ) is a smoothly varying function of L, with
a,(L) = const, a,(L)~1/In L, a,{L } = 1/L. The prefactor
f 4(t)tends toa constant for t 2 L 2/a, (L ). For intermediate
times, 1 €t € L?/a,(L), we find that f,(t)~t "2 and
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FIG. 4. {a) Illustration of a percolation fractal on a square lattice with two
types of leaks (shadowed sites). On the left, the leak consists of the cut (inter-
section) of the percolation fractal with the boundary of the box, while on the
right the leak is a randomly chosen site on the fractal. (b} Escape rate @ for
percolation fractals for a square box of edge L. Upper curves: the leak con-
sists of the cut {*“intersection”) of the percolation fractal with the boundary
of the square lattice L = 50 ((J) and L = 100 {O). Lower curves: the leak is &
single randomly chosen fractal site L = 50 (W) and L = 100 (@).

Sfslt) =const, while f,(r) shows a more complicated
behavior involving logarithmic terms, viz. f,{r}
~[{ln#)~" — (In#)~?]. Note that since f(¢)= const, for
a5t € L? the release rate in three dimensions is constant, in
contrast to the case when d =1 or d = 2. For a detailed
mathematical study of the escape rate in finite lattices with a
single hole, we refer to Ref. 12. A mathematically exact solu-
tion of the general problem of particles moving on a lattice in
the presence of several trapping sites is available'® as is that
for the case of imperfect trapping.’* These, however, are
quite awkward to evaluate when d > 2.

DRUG RELEASE FROM A FRACTAL MATRIX: MODEL 2

Another element that strongly influences the escape rate
is the structure of the polymer matrix within which the drug
is embedded. In order to illustrate the possible complexity
that one might encounter when studying this factor, we con-
sider partially encapsulated percolation fractals on a square
lattice [Fig. 4(a)] for which the percolation threshold is
P. =0.593'%; this is a commonly studied model for a
branched polymer near the gel point.” On a fractal, the mass
M depends on the radius 7 as M ~r/, and for percolation the

fractal dimension is d, = 91/48. Calculations were per-
formed as described above except that, for each run, a new
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fractal matrix was generated using the method of Hoshen
and Kopelman.'S Again, the initial site occupancy of parti-
cles on the fractal was taken to be ¢ = 0.5.

We calculated the escape rate for two types of leak: In
case (i}, the leak consists of the intersection of the percolation
fractal with the boundary of the square box [Fig. 4(a) and the
upper two curves of Fig. 4(b)]. In case (ii), the leak consists of
arandomly chosen hole [see Fig. 4(a) and lower two curves of
Fig. 4{b}]. In both cases the escape rate follows a power law
Q~1t~7, where y decreases slightly as the box size increases.
In case (i), the absolute rate is larger (for any given time)
when the box size is larger. This behavior is in accord with
increased total initial number of particles in the larger box
and concomitant increase in the surface area through which
those particles can escape. The exponent ¥ varies roughly
from 0.75 to 0.65 when L increases from 50 to 100. In con-
trast, when the leak consists of a randomly chosen hole, both
the exponent ¥ and the absolute rate depend only weakly on
L:y =040+ 0.03 for L = 50; ¥ = 0.39 + 0.03 for L = 100.
As before, hard core interactions do not affect the escape
rates.

DISCUSSION

In summary, we have studied by computer simulation
the escape rate of diffusing particles from one-, two-, and
three-dimensional boxes as well as from percolation fractals.
We have investigated how the escape rate is changed system-
atically when we change the spatial dimension and the size of
the box as well as the size of the leak. In all cases, we found
simple systematic behavior of the escape rate. From a practi-
cal standpoint, these results may guide the development of
simple systems for controlled drug release. Recent develop-
ments in controlled-release technology have emphasized he-
terogeneous systems where both the effective volume of the
polymer matrix and the rate of release of drug into that vol-
ume change with time (e.g., a growing hemispheric interface
between concentrated and dilute regions of drug).'” We anti-
cipate that high-accuracy Monte Carlo simulations will
prove to be a very useful tool in guiding the efficient design of
many types of practical controlled-release devices.
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APPENDIX

In this appendix, we discuss conditions under which the
trapping rates for diffusing noninteracting and hard core
particles become identical.

Consider a d-dimensional matrix of length L containing
L sites with M trapsatsites {1, }={17,1%,..., 13} . Initially,
at ¢ = 0, N, particles are distributed randomly at those sites 1
which are no traps, 15 (1, }. For noninteracting particles,
the probability #, (¢ 4+ 1) that a given site 1 of the box is occu-
pied by any particle after ¢ + 1 time steps is governed by the
evolution equation
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nt+1)=nmt) - 25: Wy st} + ; Wy 51 4 8lt)

(Ala)
for1#{1;}, and

m,(t)=0 (Alb)

iflis a trap site. Here w,, . 4 is the transition rate of a particle
from site 1 to the nearest neighbor sitel + 8. The sums in Eq.
(A1) run over all nearest neighbors 8 of site 1. If all transition
rates are identical, Eq. (A1) reduces to the diffusion equation
in the continuous limit. We assume that the transition rates
obey the rules

Wrs =Wisn=a ([#{]1+8#{17}) (A2a)
if a particle moves between two regular sites 1 and 1 + 8, and

waes=v (#{r}, le{l}) (A2b)

if a particle attempts to move from a regular site 1 to a trap
site | + 8. Moreover,

Wyis =0, {A2c)

iflis a trap site. If1 4+ & is outside the box the transition rate
is zero by definition. In Egs. (A2a) and (A2b) we have as-
sumed that there is only one type of regular sites where the
particles can move. If we have a mixture of two types of sites
with different potential energy, then forward and backward
jumps do not have the same probability, as has been assumed
in Eq. (A2a). Moreover, if we have distinguishable particles,
only one type of particles can be trapped, then Eq. (A2c) does
not hold.

Equation (A1) can be easily generalized to hard core
particles. Now a particle only can jump between two sites if
the attempted site is empty. Therefore, the transition rates
wy, .5 and w, , 5, are modified by factors [1 —n, 4(t)]
and [1 — n,(¢)], respectively. Then the evolution equation
for hard core particles becomes (/ # {I})

n(t+ 1)=’11(t)‘—§wl,1+5[1 — L s(8)]mle)

+;wl+5,l[1 —m(t)]m s(t)

which can be rewritten as

mt+1)=m(t) = wysmt)+ > wisimslt)
3 s

+ ; mEn st )wy s —Wiis) (A3)

Forle {/;.}, Eq. (A1b) holds. It is easy to verify that the last
sum in Eq. (A3) vanishes identically for the transition rates
(A2a)—(A2c) in connection with Eq. (A1b). Then the evolu-
tion equations for », (¢ ) in the noninteracting limit as well as
for hard core particles become identical. If we start from the
same initial configuration we are led to exactly the same
values for n, (t ) as a function of time in both cases. Averaging
over many initial configurations gives the final distribution
function P (1, ). The mean number of surviving particles at
time ¢ is given by

S(t)=§I:P(l,t)

and thus must be identical for hard core particles and nonin-
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teracting particles. Therefore also the trapping rates are
identical in both cases. This conclusion holds under the con-
dition that Eqs. (A2a)-{A2c} are valid, which has been dis-
cussed above.

If we consider partially encapsulated percolation frac-
tals [see Fig. 4(a)], Eqs. (A2a)—{A2c) have to be supplemented
by the condition that the probability to be outside the fractal
is zero. Accordingly the transition rate from a site inside the
fractal to a side outside the fractal (which is not a trap site)
must be zero. In this case, Eq. (A3) also reduces to Eq. (A1b)
and the mean number of surviving particles at time ¢, and
consequently the trapping rates, is identical for hard core
and noninteracting particles. Equation (A3) can also be ex-
tended to systems with long range interactions.'® Then
Wy, . s depends on the whole actual configuration of parti-
cles at time ¢ and Eq. (A3) does not reduce to Eq. (Ala). In
this case we expect, that the interaction will strongly influ-

ence the trapping rate.
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