Diffusion Limited Aggregation: A Paradigm of Disorderly Cluster Growth:

H. E. Stanley,* A. Coniglio,* S. Havlin,* J. Lee,* S. Schwarzer* and M. Wolf*†

*Center for Polymer Studies and Department of Physics
Boston University, Boston, MA 02215 USA

†Dipartimento di Scienze Fisiche
Università degli Studi di Napoli, I-80125 Napoli, [subeqnar]espart
document frontmatter

Diffusion Limited Aggregation: A Paradigm of Disorderly Cluster Growth
H. E. Stanley,* A. Coniglio,* S. Havlin,* J. Lee,* S. Schwarzer*† and M. Wolf*†
*Center for Polymer Studies and Department of Physics, Boston University, Boston, MA 02215, USA
†Dipartimento di Scienze Fisiche, Università degli Studi di Napoli, I-80125 Napoli, ITALY
‡Department of Physics, Bar-Ilan University, Ramat-Gan, ISRAEL
§Institute of Theoretical Physics, University of Wroclaw, PL-50-205 Wroclaw, ul. Cybulskiego 36, POLAND.

abstract The purpose of this talk is to present a brief overview of our group’s recent research into dynamic mechanisms of disorderly growth, an exciting new branch of condensed matter physics in which the methods and concepts of modern statistical mechanics are proving to be useful. Our strategy has been to focus on attempting to understand a single model system—diffusion limited aggregation (DLA). This philosophy was the guiding principle for years of research in phase transitions and critical phenomena. For example, by focusing on the Ising model, steady progress was made over a period of six decades and eventually led to understanding a wide range of critical point phenomena, since even systems for which the Ising model was not appropriate turned out to be described by variants of the Ising model (such as the XY and Heisenberg models). So also, we are optimistic that whatever we may learn in trying to “understand” DLA will lead to generic information helpful in understanding general aspects of dynamic mechanisms underlying disorderly growth.