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Abstract. Sinai has considered a novel one-dimensional walk with a random bias field E 
on each site. He has shown that when the field is taken with equal probability to be + E , ,  
or - E ,  the R M S  displacement R [(x2)]”’ increases with time t by the anomalously slow 
law R - ( log t ) ‘ .  Here we introduce long-range correlation between the random fields on 
each site by choosing a ‘string’ of k sites to have the same value of E, where k is chosen 
from the power law distribution P ( k )  = k-O. We find that the Sinai law is generalised to 
the form R - (log I ) ’ ,  where J sticks at the Sinai value y = 2 for p 2. However, for 
1 < p < 2, y varies continuously with p as y = p / (  p - 1) .  We interpret this result physically 
in terms of a novel crossover between the physics underlying the Sinai effect and the physics 
o f  biased diffusion. 

The physics of diffusion on random media has been an  active topic of recent interest 
involving many disciplines ranging from mathematical physics to materials science 
(see, e.g., the recent review by Havlin and  Ben Avraham (1987)). Much of this interest 
has focused on the conditions under which the familiar laws of diffusion break down, 
and  what form of laws are needed to replace them. Sinai (1982) has recently discovered 
conditions under which the usual law that the R M S  displacement R is proportional to 
t”’ is replaced by a logarithmically slow diffusion law 

R -(log t ) ’ .  ( l a )  

The Sinai model is as follows: a one-dimensional linear chain for which a random 
walker at  each site experiences a random bias field E = p +  - p - .  Here p + ( p - )  is the 
transition probability for a step to the right (left), with p + + p -  = 1; pi are taken from 
a distribution that satisfies the ‘Sinai condition’ (In( p + / p - ) )  = 0. In particular, one 
may choose the bias field E to have an  equal probability of being +Eo or - E o ,  with 
0 < Eo < 1. The physical basis for this dramatic slowing down of ordinary power law 
diffusion is that there is a n  uncorrelated disorder in the bias field; a uniform bias field 
would produce the simple law R - t .  Derrida and Pomeau (1982) found that ( l a )  is 
replaced by a ‘faster’ power law diffusion of the form R - t ”  if the Sinai condition 
does not hold. 

Our purpose here is to demonstrate that a simple generalisation of the Sinai model 
permits one to obtain logarithmically slow diffusion, but with a tunable exponent y 

R -(log t)?’ (1b) 
with the property that one can pass continuously out of the logarithmically slow domain 
as y + 00. The model is similar to the Sinai model in that each site experiences a 
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random bias field E = p +  - p -  that can take only the two values +Eo and -Eo .  However 
there is now a long-range correlation between the bias fields on each site. Instead of 
making a new selection of bias for each new site, we randomly select the same bias 
(*E,) for an entire string of k sites, where k is a random variable chosen from the 
power law distribution 

P (  k )  = k - P  

Typical configurations of the Sinai model and the present model are shown in 
figures l ( a )  and (6)  respectively. Consider a finite segment of the lattice consisting 
of S strings and  a total of 1 sites, and let E; be the field acting on all ki sites belonging 
to string i .  As with the Sinai model, E, takes the values +Eo and -Eo with equal 
probability. Thus the walker executes a normal random walk, with steps of unit length 
occurring at each time interval. The correlation is in the values of the random bias 
fields, and  this introduces indirectly a long-range correlation in the steps of the random 
walker. Since the sites in each string can be randomly biased in either direction, the 
net bias in the S-string segment is given by 

Note that E ( S )  is analogous to the net displacement R ( S )  of a Ltvy flight after S 
time steps-a Ltvy flight (Mandelbrot 1982, Shlesinger and  Klafter 1985)  is a correlated 
walk in which at each time step the walker moves k steps in a random direction, with 
k chosen from the distribution ( 2 ) .  

The total time for the random walker to exit this region of 1 sites scales exponentially 
with the net bias field is 

To obtain the diffusion law, we shall eliminate the variable S in favour of the variable 

( b l  
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Figure 1. Comparison between ( a )  the Sinai model, and ( b )  the present model. Shown is 
a segment of I =  10 sites of the linear chain lattice. For both models, the bias field { E , }  
takes the values +E,  and - E ,  with equal probability. However in the Sinai model, a new 
selection is made at each site, while for the present model there is a long-range spatial 
correlation of the random fields: a new selection is made only after k sites, where k is a 
random number chosen from the power law distribution ( 2 ) .  Thus the sites fall into S 
strings, with k ,  sites in string i (  i = 1, . . . , S ) .  
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I and find that S - I p - '  for 1 < p < 2 and S - 1 for p > 2 .  To see this, we first note that 
S 

, = I  

will be dominated by its upper integration limit if p < 2  and by its lower integration 
limit if p > 2 :  

To see how k,,, scales with S, we introduce a uniform distribution p (  U )  and equate 
P ( k )  d k  to d (  U), with the result that d u l d k  = P ( k )  = k-P, or U - k- 'P- l ) .  Now U m i n  . = 
1/S so that 

(6)  - - 1 / ( P - l l =  ~ I l ' P - 1 1  kmax - U" 
Substituting ( 6 )  and ( 5 6 )  into (3), we find 

( 7 )  

Finally, we combine ( 7 )  and (4), and note that rexi, is the time to cover a region 1 = R 
so that the Sinai anomalous diffusion law ( l a )  is replaced by ( l b )  with 

The case p = 2 is 'marginal' in the sense that the integral in ( S a )  involves the 
logarithm of k,,,. Accordingly, ( 5 b )  becomes 1 - S log S. It would be interesting to 
further explore the consequences of the logarithmic factors appearing for p = 2 .  

It was noted above that the present walk is not the same as a Levy flight: for the 
LCvy flight, the relation between the range R and the time r is a power law, R - t ' l d I ,  

not logarithmic. However, the present walk is also a correlated walk and  our results 
bear some intriguing parallels to the results for the Lkvy flight. For example, the 
exponent d, of the present model has the same feature as the exponent y for the LCvy 
flight. For p > 2 ,  y sticks at its value j = 2  for a Sinai random walk, while for p < 2 ,  
y varies continuously with p. Similarly, in the LCvy flight, the exponent d, sticks at 
its 'classical' random walk value d, = 2 for p > 2, while for /3 < 2 ,  d, varies continuously 
with p. 

As /3 approaches its limiting value of unity, the frequency of very long strings of 
sites whose random fields are oriented in the same direction increases without limit 
and  the exponent y diverges. When the length of a string is longer than 1, the size of 
a region, the walk is a biased random walk in this region (d, = 1 ) .  Hence as p + 1 we 
expect that the diffusion approaches the limit of a biased random walk. Indeed, a 
logarithmic anomaly of the form (8) will pass to a power law if the exponent approaches 
infinity. 

In  summary, we have introduced a generalisation of the Sinai random walk, which 
has the feature that the random field of the Sinai model is replaced by a random field 
with long-range spatial correlations whose range is parametrised by p. For all allowable 
values of p, we find that the diffusion law is not a power law but rather is a power of 
log r, R - (log f ) ' .  For p > 2 ,  the correlations in the random fields are of such short 
range that the exponent y sticks at the Sinai value y = 2 .  For p < 2 ,  these correlations 
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Figure 2. Dependence of the anomalous diffusion exponent y on p. The curve shows 
p / (  p - 1 ) .  The marginal case p = 8, = 2 separates the two cases of interest, p > 2 and 
p < 2. In the latter case, i t  is possible for one to find sufficiently long strings of identically 
oriented random bias fields that the Sinai form ( l a )  passes over to a new form ( l b ) .  

are of increasingly longer range and y increases as y = p / (  p - 1). As p approaches 
its limiting value p = 1, y becomes large without limit and the logarithmic anomaly 
becomes indistinguishable from a more conventional power law relation. 
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