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We study the distribution n(a,M) of growth probabilities {p;} for off-lattice diffusion-limited
aggregation (DLA) for cluster sizes up to mass M =20000, where a;= —logp;/logM. We find
that for large @, logn(a,M) o« —a”/log’M, with y=22%0.3 and §=1.3+0.3. One consequence
of this form is that the minimum growth probability pmin(M) obeys the asymptotic relation
logpmin(M) ~ — (logM) "*1*®/7  We find evidence for the existence of a well-defined crossover
value ¢* such that only the rare configurations of DLA contribute to n(a,M) for a> a*, while
both rare and typical DLA configurations contribute for a < a*.

Diffusion-limited aggregation (DLA) was introduced in
1981 by Witten and Sander' as a simple computer algo-
rithm for particle aggregation. Since then, it has served
as a model for a variety of growth phenomena controlled
by a scalar field ® that satisfies the Laplace equation,
V2@ =0, everywhere except on the surface of the growing
aggregate and on the system boundary, where ® =®; and
D=0, respectively.2 Growth occurs on each perimeter
site / with a probability p; proportional to V.

The most detailed description of the cluster growth pro-
cess is provided by the growth probabilities {p;} at each of
the perimeter sites i.>* In this work, we report results for
the normalized distribution function n(a,M) for a se-
quence of off-lattice clusters up to mass 20000. Here
n(a,M)da is the number of growth sites with a values in
the interval [a,a+dal, with a;= —logp;/logM. The nor-
malization is chosen such that the area is unity for each
M. We find that for large a (small p;), the distribution
function can be described by the expression

n(a,M)~noexpl —A(a”—ad)/log’M], a> ay, 1)

where no and aq are functions of M.> We also demon-
strate that Eq. (1) is consistent with a specific functional
form for the asymptotic behavior of the typical minimum
growth probability®

1ogp min(M) ~ — (loghr ) rH1+8)/r )

Our calculations are for DLA grown with an off-lattice
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algorithm, since on-lattice DLA displays anisotropy, espe-
cially for large mass.> We assign to each cluster particle
the closest grid coordinates on a square lattice with mesh
size equal to the particle diameter.’

For each cluster, we solve the Laplace equation by stan-
dard relaxation methods; our maximum error in each p; is
10 ~3p;. We used “DLA-boundary conditions,” requiring
that ® =0 on all sites on the surface of the aggregate and
®=1 on a circle of radius R=1.5R. where 2R, is the
spanning diameter of the cluster; we found that p; depends
on R, but that this dependence is within the error bars of
our calculation of the p; for R > 1.5R..

Figure 1 is a semi-log plot of {(n(a,M)) vs a?/logfuM
using the values y =2 and § =1.3. The brackets () denote
the average over the number of clusters studied for a given
mass, ranging from 90 clusters for M =< 3000 to 10 clus-
ters for M =20000. The data display linear behavior in
the region a> ao(M), supporting the form (1); ao(M)
denotes the location of the maximum of n(a,M), and
no(M) is the value of n(a, M) at a =ao(M).3

We find that y=2 0.3 by requiring straight-line be-
havior of the large a region in Fig. 1, and §=1.3+0.3 by
requiring parallel lines. We also study ensembles of 56
and 79 clusters on the square and triangular lattices, with
masses M =< 5000, and find the same values of ¥ and §
within the error bars.

Up to now, we have only described the properties of the
averaged distribution {n(a,M)) over clusters of mass M.
It is also interesting to study fluctuations of the n(a,M).
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FIG. 1. {n(a,M)) vs a’/logfd'M with y=2, §=1.3. The main part of the figure shows the portion of n(a,M) close to

the maximum; note that in order to obtain a relation n(a) ~exp(— Aa?/log’?M) for the tail, we only require the lines to be parallel.
The inset of the figure shows the same data, but over the complete range of a values. Data for six cluster masses are shown: (®),
M =753 [90]; (@), 1471 [90]; (¥), 3000 [90]; (A), 5000 [10]; (@), 10000 [10]; and (O), M =20000 [10]. The numbers in square
brackets are the number of off-lattice clusters which have been averaged to obtain the point shown.

To this end, we consider the moments

/n(a,q)sunk(a,M)]q)E;[nk(a,M)]q/Nc.us,e,s. 3)

Here ni(a,M)da is the normalized number of growth
sites of cluster k and a values in the interval [a,a+dal,
and N usters is the total number of clusters of mass M used
in the average.

In Fig. 2(a), we plot [M(a,q)]1'% as a function of
scaled a, a=a/(logioM)®*1/7. Below a characteristic
crossover value @*, we find that DLA is self-averaging in
the sense that [#M(a,g)]1"4 is independent of g— which
implies that for & <@&* there is not much sample-to-
sample fluctuation of ny(a,M). On the other hand, we
find that above @*, [M(a,g)]1"? depends strongly on g
and the system ceases to be self-averaging— which implies
large sample-to-sample fluctuations.

In Fig. 2(b) we plot the relative number of configu-
rations contributing to the average {(n(a,M)). We find
evidence for a similar sharp crossover— which occurs at
roughly the same value of @. Hence, from Figs. 2(a) and
2(b), we conclude that (a) the part of the distribution
function with & < @* is common to the majority of DLA
clusters. For @ > &*, the distribution function is dominat-
ed by rarely occurring configurations, (b) that even with
many more realizations, the behavior shown in Fig. 2
would not change—due to the lack of self-averaging.
These properties can be used as a definition of a typical
cluster, namely a cluster for which the maximum of & is
smaller than @*.

Figure 2(b) can equally well be interpreted as a proba-
bility distribution for @35, giving the probability P(&H
> &) to find in one given cluster a value a3, exceeding a

given @.° The data collapse observed in Fig. 2 and the

definition of & imply that for “typical” DLA config-
urations, alh(M)/ (lo%M )@+D/7 is a constant. Hence
a¥B (M)~ (logM) @+ D/ thereby providing direct evi-
dence in support of Eq. (2). Figure 2(b) is also consistent
with the inset of Fig. 1 which shows that there is no evi-
dence of self-averaging for large a.

The above finding is related to the fact, discussed in
Ref. 6, that the properties of a typical DLA cluster must
be distinguished from the properties of a complete ensem-
ble containing every possible DLA of mass M. For exam-
ple, in the complete ensemble the smallest growth proba-
bility p&s (M) is found in a cluster with a spiral-like
structure. In order to penetrate, the field ® has to ex-
plore a deep slit of length proportional to M. Hence,
ps(M)~exp(—M) and af%(M)= —logpmin/logM
~M/logM. Such a configuration has a remarkably small
statistical weight '® that we cannot expect to find it in the
usual process of statistical sampling. Hence for a typical
cluster, we expect to find the largest value of a, a5 (M),
which is smaller than a&%, (M).

Assuming (1) to hold for values a>>a¥5 (M) but at
most up to a < afux (M), we can calculate a typical value
for a3f(M). We require, that—on the average—this
value of alP (M) shall be realized at least on one site of
every cluster. The number of growth sites of a cluster of
mass M is proportional to M, the constant of proportional-
ity larger, but of order one. Thus we are led to the condi-
tion

(M)
g max
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FIG. 2. (a) Dependence on a=a/(logioM) ¥+ (scaled a)
of [M(a,g)1"4, for three values of ¢: (0), g =0.25; (@), 0.5; and
(2), 1.0. Each curve represents an average over 90 off-lattice
clusters of mass M =3000. (b) The relative number of clusters
contributing to {n(a,M)) is plotted against &, with y=2, §=1.3.
The precipitous drop to zero appears roughly in the same range
of values of the argument for all values of M. This plot can be
interpreted as the accumulated probability distribution of the
largest @ values in each configuration considered. The symbols
used correspond to those in Fig. 1.

where g is the number of growth sites. Hence,

ﬁ~no(M) [ngx(M)exp{—A[a’—ao(M)7]/log5M}da

_L:s an€xpi—Ala”—ao(M)"1/log’M}da
(5)

We use an asymptotic series expansion for the integrals,

neglect nonleading powers, and under the assumption that

a (M) > o3P (M), we arrive at a scaling relation for
typ

Qmax,

alp.~ (logh ) G+ V7 | 6)

giving the typical value of pmin of Eq. (1).

A relation of this form has been found in Ref. 6 for the
behavior of the quantity (logpmin(M)). We argue that
averaging the logarithm of pn, in this relation is an alter-
native approach to define typical averages. The smallest
growth probabilities are quantities which differ by orders
of magnitude from one configuration to another. Taking
the logarithm reduces the influence of single deviating
values significantly and stresses values around the most
likely one. In Ref. 6 the exponent (§+ y+1)/y has been
observed to be approximately two, matching the value
(6+ y+1)/y=2.15%£0.22 within the error bars.

In conclusion, we find an analytical form for the distri-
bution function of growth probabilities [Eq. (1)]. This
leads to a specific prediction [Eq. (2)] for how the small-
est growth probability pnin depends on cluster mass. This
work provides additional evidence favoring the possible
phase transition in DLA (Ref. 11) since it supports the
possibility that for a typical DLA configuration, pmyi, de-
creases faster than a power law. Also, we find evidence
for the existence of a well-defined crossover value a* with
the property that only the rare configurations of DLA
contribute to n(a, M) for a > a*, while both rare and typ-
ical DLA configurations contribute for a <a*. The
reader should not confuse our crossover at a* with the
possible crossover'? as a function of the distance from the
origin, which is based on the observation that DLA cluster
sites fall into two spatial regions, a “finished” or ‘“‘semi-
frozen” region and an “unfinished” or “growing” region.
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