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Abstract

A car-following model of single-lane tra�c is studied. Tra�c 
ow is modeled by a system
of Newton-type ordinary di�erential equations. Di�erent solutions (equilibria and limit cycles)
of this system correspond to di�erent phases of tra�c. Limit cycles appear as results of Hopf
bifurcations (with density as a parameter) and are found analytically in small neighborhoods
of bifurcation points. A study of the development of limit cycles with an aid of numerical
methods is performed. The experimental �nding of the presence of a two-dimensional region in
the density-
ux plane is explained by the �nding that each of the cycles has its own branch of
the fundamental diagram. c© 2000 Elsevier Science B.V. All rights reserved.
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1. Introduction

Tra�c 
ow has been a subject of intensive research in recent decades [1–25]. Special
attention has been paid recently to the problem of classi�cation of di�erent phases of
tra�c based on experimental measurements [7–11] and modeling (e.g. [12–15]).
Kerner and Rehborn [7,8] found experimentally the existence of three phases in traf-

�c: free 
ow (observed for low values of density, all cars move without hindrance
with the preferred velocity and the 
ux grows with the density), tra�c jams (for high
values of density, cars move slowly and the 
ux decreases as density increases) and
synchronized 
ow (for intermediate values of density). The latter phase is character-
ized by weak correlations between 
ux and density. Neubert et al. [9] distinguished
between synchronized 
ow and stop-and-go tra�c states in the intermediate range of
densities. Stop-and-go tra�c is characterized by a strong correlation (or anticorrelation)
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Fig. 1. (a) Dependence of the 
ux f on the density � (schematic) as reported in [11]. (b) Density-
ux relation
for stable states of the model, obtained by simulations of the model starting with di�erent (homogeneous,
random and harmonic) initial conditions, after a long transient time (grey). Each of the three black curves
corresponds to the density-
ux relation for a certain “wavelength” (in terms of number of cars).

between 
ux and density as well as periodicity in time [9] and space [10]. According
to experimental observations [10,11], di�erent values of 
ux in synchronized 
ow may
correspond to the same value of density and vice versa. In other words, the dependence
of the 
ux f on the density � has the form schematically shown in Fig. 1a.
The existence of a two-dimensional region in the density-
ux plane has not been

explained by models [11]. A recent car-following model [12] demonstrates the existence
of this phenomenon. In the deterministic version of this single-lane car-following model
the motion of each car is described by a Newton-type second-order di�erential equation.
The acceleration of a car is assumed to depend on its distance to the car ahead, its
velocity, and the di�erence in velocities between successive cars. A permitted velocity
is considered and closed boundary conditions are applied.
Assuming that the number of cars in the system is N , the tra�c 
ow in the model

is described by a system of 2N �rst-order di�erential equations. In [12] it was shown
that di�erent phases in real tra�c are associated with di�erent solutions of this system.
For example, free and jammed 
ow phases correspond to an equilibrium and the
synchronized 
ow phase is associated with limit cycles. Such an analogy has been
established before in other models (e.g. [15]) which use the dynamical system ap-
proach to tra�c modeling. But to the best of our knowledge none of those models has
reported the presence of more than one such cycle.
An important result in Ref. [12] is the presence of many limit cycles in the dynamical

system, mentioned above. It is suggested that each of these cycles has its own branch
of fundamental diagram and all these branches lie inside the two-dimensional region
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(Fig. 1b). Thus, the introduced model apart from demonstrating many experimentally
observed features of tra�c 
ow also provides an explanation of this phenomenon un-
explained before.
In the present paper a detailed analysis of the above-mentioned periodic solutions

is given. A combination of analytical and numerical tools is used. It is found that as
� changes bifurcations of small cycles from an equilibrium occur in the system. For
values of density close to bifurcation points these cycles are found approximately using
the approach described in Section 3. For other density values numerical procedures are
used to �nd the cycles (Section 4).

2. The model

The model presented in Ref. [12] (in the deterministic case) assumes that the nth
car acceleration is

an = A
(
1− �x0n

�xn

)
− Z2(−�vn)
2(�xn − D)

− kZ(vn − vper) ;

where xn is the car’s coordinate, vn its velocity, A the sensitivity parameter, D the
minimal distance between consecutive cars, vper the permitted velocity, k a constant
parameter, T the safety time gap and �x0n= vnT +D the safety distance. The function
Z is de�ned as Z(x) = (x + |x|)=2.
Therefore, the motion of cars is described by the following system of 2N nonlinear

ordinary di�erential equations

ẋn = vn ;

v̇n = A
(
1− vnT + D

xn+1 − xn

)
− Z2(vn − vn+1)
2(xn+1 − xn − D)

− kZ(vn − vper) ; (1)

n= 1; : : : ; N with periodic boundary conditions xN+1 = x1 + N=�, vN+1 = v1.
System (1) has a solution

v0n = v0 =




A(1− D�) + kvper
A�T + k

; �6
1

D + Tvper
;

1− D�
�T

; �¿
1

D + Tvper
;

x0n =
n− 1
�

+ v0t ; (2)

(n= 1; : : : ; N ), which corresponds to homogeneous 
ow.
It is easy to verify that (1) in variables {�n = xn+1 − xn}, vn has an equilibrium

solution �1 = · · ·= �N = 1=�, v1 = · · ·= vN = v0.
The linearization of Eq. (1) near this equilibrium has the form

��n =−p�̇n + q(�n+1 − �n); n= 1; : : : ; N ; (3)
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where �n = �n − 1=� (n= 1; : : : ; N ), �N+1 = �1,

p= AT�+ k; q=
AT + kTvper + kD

AT�+ k
· A�2 if �6

1
D + Tvper

;

p= AT�; q= A� otherwise :

Similar to [16,17], a solution of Eq. (3) can be written as

�n = exp{i��n+ zt} ; (4)

where �� = (2�=N )� (� = 0; : : : ; N − 1) and z is a complex number. Substituting (4)
into (3) we obtain the algebraic equation for z

z2 + pz − q(ei�� − 1) = 0 : (5)

Each of the N equations (5) has two solutions. These 2N complex numbers are the
eigenvalues of system (3). For �¡ 1=(D+Tvper) and �¿ 2=AT 2 all but one (which is
zero) of them are negative which indicates the stability of the homogeneous 
ow solu-
tion. As � decreases pairs of complex conjugate eigenvalues may cross the imaginary
axis which causes the formation of small periodic solutions (Hopf bifurcations).
The next section is devoted to the approximate �nding of these periodic solutions

for � in the vicinities of their bifurcation points.

3. Study of bifurcations of small periodic solutions

For the study of bifurcations, we propose the following common approach. Let (1)
be written as

ẋ = f(x; �) ; (6)

where x= (�1; w1; �2; w2; : : : ; �N ; wN )T ∈ R2N and wn= vn − v0. The homogeneous 
ow
solution (2) corresponds to the zero solution of (6).
For future steps we need system (6) written as

ẋ =M (�)x + f2(x; �) +R(x; �) ; (7)

where

M (�) =




0 −1 0 1 0 : : : 0 0

q −p 0 0 0 : : : 0 0

0 0 0 −1 0 : : : 0 0

0 0 q −p 0 : : : 0 0

: : : : : : : :

0 1 0 0 0 : : : 0 −1
0 0 0 0 0 : : : q −p



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is the linearization of (6) near zero, f2(x; �) are the second-order terms and R(x; �)
are the higher-order terms.
Let for � = �0 the matrix M0 = M (�0) have a pair of imaginary eigenvalues

± i!. The bifurcation problem is closely connected with 2�=!-periodic solutions of
systems

ẋ =M0x (8)

and

ẋ =−MT
0 x : (9)

We can �nd 2�=!-periodic solutions ’1(t), ’2(t) of (8) and  1(t),  2(t) of (9) such
that

!
2�

∫ 2�=!

0
〈’i(t);  j(t)〉 dt = �ij ; (10)

where i; j = 1; 2 and �ij is the Kronecker symbol.
Note, that if � is an eigenvalue of matrix M0, the corresponding eigenvector can be

found as

h(�) =
(
ei�� ;

qei��

�+ p
; e2i�� ;

qe2i��

�+ p
; : : : ; e(N−1)i�� ;

qe(N−1)i��

�+ p
; 1;

q
�+ p

)T

;

since � is a solution of (5) for some �.
An eigenvector of −MT

0 corresponding to � can be found similarly. Therefore,
we can �nd ’1(t) = cos!t Re h(i!) − sin!t Im h(i!) and ’2(t) = cos!t Im h(i!) +
sin!t Re h(i!). Functions  1(t) and  2(t) can be found in the same manner using the
eigenvectors of −MT

0 corresponding to i! and then orthogonalized to �t (10).
Let �= �0 + �. Then M (�) =M (�0 + �) =M0 + �B+O(�2), where B= @M (�0)=@�

and system (7) can be rewritten as

ẋ =M0(�)x + �Bx + f2(x; �0 + �) + O[(||x||+ |�|)3] : (11)

In order to �nd a small cycle we introduce a new parameter c, such that [26]

�= c
1 + c2
2 + · · · (12)

and the new time

�=
t

1 + h1c + h2c2 + · · · ; (13)

where h1; h2; : : : and 
1; 
2; : : : are yet unknown parameters. We are looking for a small
cycle in the form

x(�) = cx1(�) + c2x2(�) + · · · ;

where x1, x2; : : : are unknown functions of �.
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Substituting (12) and (13) into (11) and equating the terms of the same pow-
ers of �, we obtain that x1(�) is a 2�=!-periodic solution of (8). We can assign
x1(�) ≡ ’1(�).

x2(�) can be found as a 2�=!-periodic solution of

dx2
d�

=M0x2 +F2(’1(�); h1; 
1) ; (14)

where

F2(’1(�); h1; 
1) =−h1M0’1(�) + 
1B’1(�) + f2(’1(�); �0) :

As shown in [27], for system (14) to have a periodic solution it is necessary and
su�cient that

∫ 2�=!

0
〈F2(’1(�); h1; 
1);  i(�)〉 d�= 0 ;

for i = 1; 2. This condition yields two equations with unknown h1 and 
1. Therefore,
the periodic solution of (11) can be approximately found as

x∗(t) =
�

1

’1(t) : (15)

This solution has the period T =(2�=!) (1+h1�=
1)+O(�2). Higher approximations of
the solution can be found using the algorithm described above. Note that according to
(4) there is an integer 16�6N − 1 such that the 
ow state corresponding to solution
(15) is a wave with the wavelength L=� (in length units) or N=� (in number of cars).
In the following, we shall call this solution “�-cycle”.

4. Numerical study of periodic solutions

Each of the small cycles found using the approach proposed in the previous section
can be used as initial data for numerical analysis of periodic (in variables �n, wn)
solutions of (1) for density values far from the bifurcation points. Fig. 2 demonstrates
the development of these periodic solutions as � decreases. Computations are performed
so that � is changed by a small value and the results of computations from the previous
step are taken as initial data. In total, nine bifurcations were detected in this simulation
(� = 1; : : : ; 9), but all the cycles except for 5-, 6-, 7- and 8-cycles lost stability at
high-density values as illustrated in Fig. 2b. Note that the above-mentioned four cycles
remain stable even for �¡ 1=(D+Tvper)= 0:01818 : : :, which supports the well-known
experimental �nding of the coexistence of free and congested tra�c regimes in a range
of densities.
Fig. 3 illustrates the development of the solutions shown in Fig. 2 (5-, 6-, 7- and

8-cycles top to bottom). The graphs on the left-hand side present the distribution of �n

and vn for di�erent values of �. The bifurcation density value �0 and � corresponding
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Fig. 2. (a) Fundamental diagrams of four di�erent periodic solutions (5-, 6-, 7- and 8-cycles, top to bot-
tom) for N = 100, A = 3 m=s2, k = 2 s−1, vper = 25 m=s, D = 5 m. A straight line for low density
values corresponds to the homogeneous 
ow solution. (b) Dependence of mean-square variation of veloc-
ities �v (divided by the average over the velocities of all cars 〈v〉) on �. Solid lines correspond to the
four cycles shown in (a), dotted lines correspond to other cycles which lost stability at high values of
density.

to each solution is speci�ed. The smallest loop on each graph is the solution found
analytically for � close to �0 using the approach presented in Section 3. The other
loops represent the same solutions found numerically with decreasing � by steps of
�� = 0:01. The right-hand-side graphs show the dependence of �n on n for corre-
sponding periodic solutions. The sinusoidal plot with smaller amplitude corresponds to
the smallest loop in the left-hand-side plot and the other plot to the fourth loop from
inside.
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Fig. 3. Development of the four di�erent periodic solutions (Fig. 2a) for decreasing �.
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Conclusion

We studied a model of single-lane tra�c 
ow, which is described by a system of
non-linear ordinary di�erential equations. The occurrence of inhomogeneities in con-
gested tra�c is related to Hopf bifurcations in this system. Density values for which
new cycles emerge are found and the cycles themselves are derived analytically near
bifurcation points. The dynamics of these cycles far from bifurcation points is studied
using numerical methods. It is found that each of these cycles has its own branch of
fundamental diagram which suggests an explanation to the experimental �nding of the
presence of a two-dimensional region in the density-
ux plane.
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