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We suggest a novel percolation model where the generated clusters are loopless structures. In
this model sites are occupied with probability p and blocked with probability 1 — p, but those sites
closing loops are considered as blocked sites with probability 1 (“green sites”). Using scaling
analysis and numerical simulations in d =2, we find that the static exponents are the same as for

conventional percolation.

In contrast, the dynamical exponents such as the diffusion and resis-

tance exponents are significantly different. This result supports the argument that in percolation
the dynamical exponents are independent of the static exponents.

In recent years, the static and dynamical features of
percolation systems have been studied extensively.'™'2
This is due to the fact that many phenomena in nature,
ranging from the spreading of epidemics'3 and diffusion
fronts'# to the peculiar behavior of the resistance in disor-
dered ionic conductors,'® can be understood by percola-
tion theory. While the static exponents characterizing the
geometrical structure of percolation clusters (such as j, v,
and the fractal dimension dy) are known exactly for two-
dimensional percolation,'® only numerical estimates exist
for the resistance exponent ¢ and the diffusion exponent
d, (see, e.g., Ref. 12). The question if there exists a rela-
tion between the dynamical exponents and the static ex-
ponents has been discussed extensively.>% 217719

The difficulties in studying theoretically the dynamical
properties of percolation systems are mostly due to the
complexity of the loops which appear in the clusters in all
length scales. In order to better understand the effect of
these loops on the geometrical and dynamical features, we
introduce and study a model of correlated percolation in
which the minimal number of sites needed to generate
loops are taken away (green sites). The generated clus-
ters are therefore loopless. We find that the static geome-
trical properties are not affected by blocking the green
sites while the dynamical exponents are significantly
modified, §=df/d1, where d; is the chemical dimension?®
of the cluster.

To generate loopless percolation clusters we use an al-
gorithm which is a modification of the Leath growth
method.?! In the first step, the origin of a lattice is occu-
pied by a cluster site and its nearest-neighbor sites are oc-
cupied randomly with probability p and blocked with
probability 1 —p. The empty nearest neighbors of the
cluster sites form the perimeter sites. In the second step
(which differs from Leath growth method), those sites
closing loops are blocked with probability ¢ =1. Sites that
close loops are those perimeter sites that have two or more
nearest-neighbor cluster sites. We call these blocked sites
green sites. The remaining perimeter sites form the
growth sites which then are occupied randomly with prob-
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ability p or blocked with probability 1 —p. The procedure
is continued in the next steps thus avoiding loops in all
length scales. In this algorithm, in the /th step, cluster
sites in the /th chemical shell?® around the origin are gen-
erated.

Figure 1 shows a typical example of such a loopless
structure. The cluster sites are shown in Fig. 1(a), and
the corresponding green sites are shown in Fig. 1(b).
Both pictures look very similar; the green sites appear
everywhere in the cluster and their density is “proportion-
al” to the density of the cluster.

In order to determine the critical concentration p., we
generated an ensemble of loopless clusters and determined

FIG. 1. A typical loopless percolation cluster at criticality:
(a) the cluster sites and (b) the green sites. Note the close simi-
larity between both pictures.
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the number of “surviving” clusters of / chemical shells
N(1), for several values of p. In analogy to conventional
percolation theory we expect that for p > p., due to the
presence of an infinite cluster, N (/) will reach a constant
value at large /, while for p < p. it should drop exponen-
tially. At p=p., N(/) should decay with a power law,

N ~I17%. (1)

Figure 2 shows N (/) for three representative probabilities:
For p =0.68 the curve approaches a constant value, while
for p=0.64 the curve drops exponentially. At p =0.66,
N(I) decreases with a power law. Thus p =0.68 is above
Pc, P =0.64 is below p. and p =0.66 is very close to p..
More detailed simulations?? yield p. =0.660 %+ 0.002.

In the following we consider the case p =p.. For con-
ventional percolation the number of surviving clusters of S
sites scales as N(S)~S "~ where r=1 +d/dy. Since
the number of sites S scales with / as S~ld’, where d; is
the “chemical” dimension?? of the cluster, it follows that

N()~1 ~ %=1 )

In d=2, d;=91/48 and d;/d; =1.130 % 0.002, >} yielding
di(d/d;—1) =0.0922 +0.0002. From Fig. 2 we find that
x =0.085=*0.01, which within the error bars is in good
agreement with the accepted value for percolation. This
indicates that the distribution of the loopless clusters at p,
is the same as for conventional percolation.

Figure 3(a) shows the mean number of cluster sites S
and the mean number of green sites G of large loopless
clusters within / chemical shells from the origin. The suc-
cessive slopes shown in the inset of the figure yield
d;=1.68 £0.02 for both the cluster sites and the green
sites. This value agrees, within the error bars, with the
value d;=1.678 =0.003 (Ref. 23) for conventional per-
colation clusters.

The mean distance R of cluster sites in the /th shell is
shown in Fig. 3(b). Since R~1%" we can deduce the ra-
tio d;/d; from the figure. From the slope of the curve we
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FIG. 2. Number of surviving clusters N(/) containing /
chemical shells, for three representative probabilities p: p =0.64
(2), 0.66 (0), and 0.68 (x).
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FIG. 3. (a) Plot of the mean number of cluster sites (O) and
the mean number of green sites (A) at criticality as a function
of the chemical distance / from the origin. The inset shows the
values of the local slopes of both curves, which yield the fractal
dimension d;. (b) Plot of the mean-square radius of gyration R?
at criticality as a function of the chemical distance / from the
origin. The inset shows the values of the local slopes of the
curve, which yield 2d;/dy at large /. To obtain the results, aver-
ages have been made over 10* configurations.

obtain d;/d;=0.885+0.01. Combining this value with
our finding for d; we obtain dy =1.90 & 0.04 which is very
close to dy==1.896 of conventional percolation.

The above results indicate that the loopless percolation
clusters are described by the same static exponents as con-
ventional percolation clusters. In contrast, their transport
properties are very different, since the absence of loops
changes the dynamical behavior. Following Ref. 24, the
resistance p between two sites on a loopless structure with
finite ramification is simply proportional to the chemical
distance / between them. Hence we have p~/~R“'¥
~R¢ with the resistance exponent { being simple
C -d f / d 0

Diffusion on the cluster is characterized by the mean-
square displacement {r2) of a random walker as a function
of time ¢, (r2)~¢ 2% asymptotically. The diffusion ex-
ponent d,, is related to { by the Einstein relation d,,
=d;+{.® The spectral dimension d; (Ref. 8) occurring
in the phonon density of states and the probability of a



RAPID COMMUNICATIONS

5472

random walker to return to the origin is related to dy and
d, by d; =2ds/d.,.

From the above considerations, using our numerical
values for dy and d;, we find {=1.13+0.01, d,, =3.03
+0.05,and d; =1.255+0.01 ind =2.

Anticipating that d; and d; are the same as for conven-
tional percolation [where d;=91/48 and d;=1.678
+0.003 (Ref. 23)1, we predict for loopless percolation in
d=2

£=1.130+0.002, d, =3.026+0.002,
3)
d;=1.253+0.002.

These values are significantly different from £=0.97,
d,=2.87, and d;=1.33 found for regular percolation
(see, e.g., Ref. 12), because the effect of loops is to
enhance transport.

In order to study the effect of loops in the whole time
regime, we have performed detailed numerical simulations
of random walks on the loopless clusters, using the exact
enumeration method (see, e.g., Ref. 12). The result for
the exponent 2/d,, of the mean-square displacement, as a
function of time ¢, is shown in Fig. 4. The exponent de-
creases continuously with time. For times larger than
t=1000, 2/d, is smaller than the asymptotic value for
conventional percolation, reaching a value 0.672 (corre-
sponding to d,, =2.98) at about 5000 times steps. Since
there is a large transient region of time in the process, it is
likely that 2/d,, reaches its predicted asymptotic value
only at very large times, being of the order of 10°.

Above the critical concentration, we assume that the
transport exponents are identical to the case p =1, where
the only blocked sites are the green sites. In this case
loopless deterministic fractals are generated, with dy=d;
=d, and the transport exponents can be calculated exact-
ly,{=1,d,=d+1,and d; =2d/(d+1).

For all dimensions d = 3, the values for the diffusion
exponent at p =1 are larger than at p., while in d =1 they
trivially coincide. Anticipating the numerical value
dy/d;=1.130%0.002 (Ref. 23) in d =2, we find that only
ind=2, d,, (=3.03) at p,. is larger than at p =1, but we
do not yet have an obvious reason for this different behav-
ior. The effect of blocking sites is to shorten branches of

FRANK TZSCHICHHOLZ, ARMIN BUNDE, AND SHLOMO HAVLIN 39

T T T T T T T T T T T T

20 —
dw Jay 4
71 + N W

0.70 a 1
0.69 4 .

068 T :

- A 4

067 o i, . Deanapssa |

102 103 , 104

FIG. 4. The graph shows the local slope 2/d. of a log-log plot

of (r2(z)) as a function of time 7. To obtain this result, clusters

with 250 shells have been generated and averages have been
made over 400 configurations.

the cluster. Accordingly, the tendency of a random walk-
er to get stuck in large branches of the loopless structure
should be decreased at p., and we expect d,, at p. not to
exceed d,, at p=1. This is in contrast to the prediction
d,, ==3.03, which is based on the numerical result for
ds/d). In order to satisfy the “rule” d, <d+1 also in
d =2, we must require
dr _ 53

=-===1.104.
4 = 1.104 4)

This result, however, is out of the error bars for ds/d,
(= £31 30 £+0.002) found recently by Herrmann and Stan-
ley.

To conclude, we have presented a percolation model for
which the static exponents are in the same universality
class as regular percolation while the dynamical exponents
are different from those of conventional percolation. The
result indicates that from the static geometrical exponents
one cannot obtain the dynamical exponents. An interest-
ing question is currently studied. Do the dynamical ex-
ponents such as d,, depend continuously on the probabili-
ty c of a green site to be blocked?
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