COMMENT

Percolation thresholds on finitely ramified fractals

Haim Taitelbaum†, Shlomo Havlin†, Peter Grassberger‡ and Ulrike Moenig‡

† Department of Physics, Bar-Ilan University, Ramat Gan, 52100 Israel
‡ Physics Department, University of Wuppertal, Gauss-Strasse 20, D-5600 Wuppertal 1, Federal Republic of Germany

Received 7 August 1989, in final form 28 September 1989

Abstract. Exact renormalisation group recursion relations are used to estimate the effective percolation thresholds for site and bond percolation on finite-generation Sierpinski gaskets, and for bond percolation on branching Koch curves.

The Sierpinski gasket (SG) is a prototype of a finitely ramified fractal [1] which often served as a theoretical 'laboratory' for concepts related to fractals. In particular, Gefen et al [1] were the first to treat percolation on a SG, using an approximate renormalisation group (RG) recursion relation. They found that \(p_c = 1 \), a result which is intuitively plausible given the low connectedness of the SG. More precisely, let us look at finite-generation approximations of a SG, and let us call \(R_n \) the probability that on an \(n \)th generation \(\text{SG} \) all corners are connected. We then define an effective threshold \(p_c^{(n)} \) by requiring \(R_n(p = p_c^{(n)}) = c \), with \(0 < c < 1 \). In [1] it was found for bond percolation that

\[
p_c^{(n)} \approx 1 - 1/2 \sqrt{n} \quad \text{for } n \to \infty. \tag{1}
\]

The site percolation problem has been studied more recently by Yu and Yao [2], who found \(p_c^{(n)} \approx 1 - 1/n \) by means of heuristic arguments and numerical simulations. Related to these problems are other transport problems on the SG, treated in [3-6].

It is the purpose of this comment to point out that for percolation on a SG one can give the exact RG recursion relations, similar to those given in [3] for the problem of Joule heat distribution on a SG, and in [5, 6] for self-avoiding walks and trails.

In addition to the probability \(R_n \) for percolation from any corner to both others, we need the probability for percolation between two corners, but not between them and the third. We call this \(S_n \). Obviously, \(1 - R_n - 3S_n \) is the probability that there is no percolation between any pair of corners. Graphically, we represent \(R_n \) and \(S_n \) as shown in figure 1.

![Figure 1. Probabilities for a finite-generation Sierpinski gasket to percolate: (a) from any corner to any other corners; (b) from corner A to corner B, but not to corner C.](image-url)
For bond percolation, the RG recursion for R_n is shown graphically in figure 2. Together with the somewhat more complicated recursion for S_n, we then obtain the exact relations

$$R_{n+1} = R_n^3 + 6R_n^2S_n + 3R_nS_n^2$$
$$S_{n+1} = (R_n + S_n)^2 - 4R_n^2S_n + S_n^3 - R_n^3.$$ \(2\)

We make now an ansatz

$$R_n = 1 + \alpha/n + O(n^{-3})$$
$$S_n = \beta/n + \gamma/n^2 + O(n^{-3})$$ \(3\)

with open parameters α, β and γ. Notice that no term $\sim 1/n^2$ appears in the ansatz for R_n, as such a term can always be absorbed in the term $\sim 1/n$ by a translation $n \to n + \text{constant}$. The recursion relations give the unique solution

$$\alpha = -\frac{1}{4}, \quad \beta = -\frac{1}{4}, \quad \gamma = -\frac{1}{16}.$$ \(4\)

In order to have non-negative probabilities, we can use this solution only for $n < 0$. Level $n = 0$ corresponds to the outer length scale. Assume now that the recursions (2) hold only for $n > -N$, i.e. level $n = -N$ corresponds to the inner length scale. At this scale, we have a simple triangle with bond probability p, i.e.

$$R_{-N} = p^3 + 3p^2(1-p)$$
$$S_{-N} = p(1-p)^2.$$ \(5\)

Comparing (3) and (5) gives then in agreement with [1]

$$p_c^{(N)} = 1 - 1 - \sqrt{N} + O(N^{-1})$$ \hspace{1cm} \text{(bond percolation).} \hspace{1cm} \(6\)

This result is supported by numerical simulations which were performed using a technique described in detail in [4]. The effective percolation threshold was determined according to the condition $R_n(p = p_c^{(n)}) = 0.95$, where the constant $c = 0.95$ was chosen arbitrarily.

Figure 2. Recursion relation for R_n, the probability to percolate from any corner to any other.

Figure 3. Recursion relation defining a branching Koch curve.
For site percolation, the recursion relations are somewhat more complicated. A straightforward analysis gives
\[
R_{n+1} = R_n^3 p^3 + 3R_n p^2 ((1-p)R_n^2 + 2R_n S_n + S_n^2)
\]
\[
S_{n+1} = p[(S_n + R_n)^2 + pS_n^3 - p(3+p)R_n^2 S_n - p(2-p)R_n^3].
\]
(7)

We were not able to solve this analytically as in the bond percolation case. It is however trivial to iterate (7) numerically, with the initial values for \(R \) and \(S \) given by (5). From such iterations, we found
\[
p_c^{(N)} \approx 1 - 0.5/N \quad \text{site percolation}
\]
(8)
which agrees qualitatively but not quantitatively with the result of [2]. We might add that we also performed numerical iterations on (2), thereby verifying (3)-(6).

Finally, we should mention that similar (and indeed simpler) exact recursion relations can be given for many other fractals, including in particular branching Koch curves [7]. In the latter case, one finds in general an exponential convergence of \(p_c \) towards 1. For instance, for bond percolation on the branching Koch curve shown in figure 3 we get a RG relation for the probability \(R_n \) of percolation
\[
R_{n+1} = R_n^3 (1-R_n)
\]
(9)
from which we obtain \(p_c^{(N)} \approx 1 - \text{constant}/2^N \). Again, this result is found to be in perfect agreement with numerical simulations.

References