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Abstract

We discuss recent 1ndings suggesting that an inverse square probability density distribution
P(‘)∼‘−2 of step lengths ‘ leads to an optimal random search strategy for organisms that can
search e3ciently for randomly located objects that can only be detected in the limited vicinity
of the searcher and can be revisited any number of times. We explore the extent to which
these 1ndings may be dependent on the dimensionality of the search space and the presence of
short-range correlations in the step lengths and directions. c© 2001 Elsevier Science B.V. All
rights reserved.
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1. Introduction

Many organisms, such as predators, must search for randomly located “target” ob-
jects (e.g., prey) whose exact locations are not known a priori. The question of which
statistical strategy to adopt in order to optimize the random search processes has re-
cently been studied [1]. Analytical and simulation results [1], as well as experimental
data [2–5], suggest that a L�evy probability density distribution

P(‘j)∼‘−�j ; (1)
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Fig. 1. The product of the search e3ciency � and the mean free path � vs. � in for various �, found from
1-D simulations. (b) �� found from simulations in 2-D, with �=5000, for a L2 system with linear size
L=104. (c) �� for a L3 system with L=100 and a “theoretical” value �=10000. (Since �¿L, the periodic
boundary conditions lead to a greater than expected value of �; because the eKective value of � is smaller
than the theoretical value.) In each case, �opt ≈ 2 emerges as an optimal value of the L�evy �ight exponent.
(We have assumed rv =1 throughout.)

of step lengths ‘j can lead to optimal searches [1], when �=2: Here we further discuss
the dependence of this 1nding on the dimensionality of the search space, as well as
on the presence of short-range correlations in the lengths and directions of the steps.
An analytical approach to these questions can be found in Ref. [1]. We brie�y outline

the argument here. Consider the following model of random search strategies: Assume
that target sites are distributed randomly, and the searcher behaves as follows (see
Fig. 1 in the article by da Luz et al., in this issue): (i) If there is a target site located
within a “direct vision” distance rv, then the searcher detects it with certain probability
and moves on a straight line to the detected target site. (ii) If there is no detected
target site within a distance rv, then the searcher chooses a direction at random and
a distance ‘j from the probability distribution, Eq. (1). It then incrementally moves to
the new point, constantly looking for a target within a radius rv along its way. If it
does not detect a target, it stops after traversing the distance ‘j and chooses a new
direction and a new distance ‘j+1, otherwise it proceeds to the target as in step (i)
above.
This model admittedly [1] ignores predator-prey relationships and learning. Never-

theless, conclusions can still be drawn about the the importance of such short-range
correlated “memory” eKects (see below). The analytical solution proceeds as follows:
A “mean 1eld” approximation is 1rst obtained for the the mean free path � of the
searcher between successive target sites:

〈‘〉 ≈
∫ �
rv
dx x1−� + �

∫∞
� x−� dx∫∞

rv
x−� dx

=
(
� − 1
2− �

)(
�2−� − r2−�v

r1−�v

)
+
�2−�

r1−�v
:
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Next, one de1nes the search e3ciency function �(�) to be the ratio of the number of
target sites visited to the total distance traversed by the searcher, such that �= [N 〈‘〉]−1.
N is the mean number of �ights taken by a L�evy searcher in order to travel between
two successive target sites. Here, we consider only the case of nondestructive foraging
for sparsely distributed target sites, in which case a target site can be revisited any
number of times. (Destructive foraging is treated in [1,6].) It has been shown [6,7] that
in this case one obtains N∼ (�=rv)(�−1)=2, for 1¡� 6 3: Substituting the expression
for N and 〈‘〉 into the de1nition of � and diKerentiating with respect to �, one 1nds
that the optimal e3ciency �=1=(Nn〈‘〉) is achieved at

�opt = 2− � ; (2)

where �∼1=[ln(�=rv)]2. So in the absence of a priori knowledge about the distribution
of target sites, an optimal strategy for a searcher is to choose �opt = 2 when �=rv is
large but not exactly known.
We now comment on the eKects of short-range correlations in the directions and

lengths of the steps. Note that the expression N∼(�=rv)(�−1)=2 describes the correct
scaling even in the presence of short-range correlations. Short range correlations in
the lengths of the �ights are plausible because the searcher can remember how far it
has traveled. Short range correlations in the directions of the �ights are also plausible,
because it is unlikely that an organism, for example, will suddenly make a 180◦ turn.
Such short-range correlations can alter the width of the distribution P(‘), but cannot
change �, so the main results remain unchanged. Hence, learning, predator-prey rela-
tionships, and other short-term memory eKects become unimportant in the long-time
long-distance limit. We have simulated nondestructive foraging with short range cor-
relations in the �ight lengths, with correlation times up to �=10�ights, such that step
‘j ≡ ‘j−1 exp(−1=�) + ‘′j [1− exp(−1=�)]; where ‘′j is chosen according to Eq. (1). We
1nd that the estimated value of �opt = 2 remains unchanged.
Moreover, it can be argued that it would be pointless for biological organisms with

even limited memory to execute L�evy �ight motion with �=2 if the optimum value
�opt = 2 were sensitive to the presence of such short-range correlations. The 1nding
that microorganisms, insects, birds, and mammals have been observed to follow a
L�evy distribution of �ight lengths or times [1–5] thus lends support to the hypothesis
that the optimum value �opt = 2 is “robust” with respect to short-range “memory”
eKects. Indeed, the exponent � appears to be the same in many instances [1]. When
the nectar concentration is low, the �ight length distribution of bumble bees [1] decays
like Eq. (1) with � ≈ 2. Similarly, the value � ≈ 2 is also found for the foraging time
distribution of the Wandering Albatross [5] and deer, in both wild and fenced areas
[1].
Finally, note that the analytical results outlined above are independent of the di-

mension of the foraging space. Speci1cally, the value �opt = 2 does not depend on the
number of spatial dimensions. This 1nding is analogous to the behavior of random
walks whose mean square displacement is proportional to the number of steps in any
dimension [8]. We have simulated nondestructive foraging and found results (Fig. 1)
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consistent with the theoretical predictions. It is interesting to note that the experimental
value 26�62:5 found for amoebas [3,6] is consistent with the hypothesis that �opt = 2
might be a universal value of the exponent in L�evy �ight foraging.
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