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Abstract
Detrended fluctuation analysis is used to test the performance of global climate
models. We study the temperature data simulated by seven leading models
for the greenhouse gas forcing only (GGFO) scenario and test their ability to
reproduce the universal scaling (persistence) law found in the real records for
four sites on the globe: (i) New York, (ii) Brookings, (iii) Tashkent and (iv) Saint
Petersburg. We find that the models perform quite differently for the four sites
and the data simulated by the models lack the universal persistence found in the
observed data. We also compare the scaling behaviour of this scenario with that
of the control run where the CO2 concentration is kept constant. Surprisingly,
from the scaling point of view, the simple control run performs better than
the more sophisticated GGFO scenario. This comparison indicates that the
variation of the greenhouse gases affects not only trends but also fluctuations.

1. Introduction

Indications of weather persistence over months and seasons are known [1]. Using DFA and
wavelet analysis, it has been shown recently [2,3] that the variations of the daily temperatures
from their average values (seasonal trend) exhibit a scaling law which is independent of the
location of the site. Indications of such a persistence law through spectral analysis have also
been found [4, 5]. It was found that the persistence, characterized by the autocorrelation
function C(s) of temperature variations separated by s days, approximately decays as s−γ ,
with roughly the same correlation exponent γ ∼= 0.7 for the different sites considered [2, 3].
The range of this universal persistence law exceeds one decade, and there is no evidence that
this law breaks down even on longer time scales.

Climate models are important since they are believed to predict the climate changes
that occur as a result of anthropogenic interference with atmosphere. Here we study seven
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state-of-the-art models: GFDL-R15-a, CSIRO-Mk2, ECHAM4/OPYC3, HADCM3, CGCM1,
CCSR/NIES, and NCAR-PCM. Each model has certain unique characteristics such as the
numerical methods, the type of subgrid-scale parameterizations, the spatial resolutions, and
the period of integration. However, all are based on the same principles, all have common
variables such as temperature, pressure and precipitation and all are coupled to ocean dynamics.

As one test of the validity of the model simulations, we would expect the universal scaling
law found in the real observations to also be identifiable in the virtual world as represented
by the model outputs.

This paper is structured as follows: in section 2, we discuss the methodology of fluctuation
analysis (FA) and detrended fluctuation analysis (DFA). In section 3, we consider the record
analysis and discuss the results, and in section 4 we present conclusions.

2. Methodology

2.1. FA and DFA

In order to explain the methods, let us consider the monthly mean temperature data Ti measured
at a meteorological station. The index i counts the months in the record, {i = 1, 2, . . . , N}.
Figure 1(a) shows a portion of the monthly temperature data (◦) for Brookings simulated by
the GFDL model. For eliminating periodic, seasonal trends we obtain the deviations of Ti ,
�Ti = Ti −Ti (see figure 1(a), solid curve shows the climatological annual cycle, Ti), from the
average of the monthly temperature Ti for each month i, say January, which has been obtained
by averaging over all years in the temperature series. Figure 1(b) shows the temperature
fluctuations �Ti about the annual average. Rather than calculating C(s) directly from �Ti ,
which is hindered by the possible non-stationarities in the data and by the finite length of the
records, we study the fluctuations in the temperature ‘profile’, Yn = ∑n

i=1 �Ti in windows of
size s.

To this end, we divide the profile into K = 2[N/s] non-overlapping windows of size s

(indexed ν) starting from the beginning as well as from the end. In the simple FA we calculate
the square of the difference of the profile at both ends of each segment ν and their average over
all segments which gives the square of the fluctuation function

F 2(s) = 1

K

K∑

ν=1

(Yνs − Y(ν−1)s+1)
2. (1)

This procedure is repeated for different length scales s to obtain a scaling relation between
F(s) and s. For long-range correlated data, F(s) increases with s according to the following
power law [6]

F 2(s) ∼ s2α α = 1 − γ

2
(2)

where α is the fluctuation or scaling exponent. If α = 0.5, the signal is uncorrelated; if
α > 0.5, there are positive correlations; if α < 0.5, the signal is anticorrelated.

The drawback of FA like the Hurst analysis and the power spectrum analysis is that F(s) is
strongly affected by the presence of trends. To eliminate trends in a systematic way and thereby
learn about them we also employ several orders of DFA [7–9]. The method has been applied
to a variety of records ranging from DNA sequences to atmospheric data through heart-beat
time series, see e.g. [2, 10, 11].

In DFA, we fit the data of the profile inside each segment (ν) of size s by using a kth order
polynomial function pk

ν(i), which is called the local trend. The order of the polynomial used
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Figure 1. Interpolated monthly temperature data of Brookings simulated by the GFDL model.
(a) Solid curve represents the annual cycle Ti for 2 years and the monthly temperatures are shown
by ◦. (b) Temperature fluctuations around the mean value �Ti .

for the fit fixes the order of DFA. We detrend the profile Y (i) by subtracting the local trend
pk

ν(i) in each box, and calculate the detrended fluctuation function

Fν(i) = Yν(i) − pk
ν(i). (3)

Thus, DFA order k eliminates the polynomial trends of order k from the profile and hence
trends of order k − 1 from the original signal.

For a given segment of size s, we calculate the DFA mean square fluctuation function

F 2(s) = 1

K

K∑

ν=1

1

s

νs∑

i=((ν−1)s+1)

[Fν(i)]
2 ∼ s2α. (4)

The mean square fluctuation function obtained from DFA has the same scaling behaviour
as equation (2).

It is now quite clear from the above arguments that the trends will not be removed in
the simple FA method, but they are systematically removed by different orders of DFA. In
fact, the spectral method and the Hurst method lack this ability to distinguish between trends
and correlations. In order to obtain a reliable estimate of the fluctuation exponent, one should
increase the order of DFA until the convergence in the α value is achieved. Thus, by comparing
the results of FA and DFA, one can identify both trends and correlations in the records.

3. Record analysis

In this section, we apply FA and DFA methods to the observed records at four locations in order
to corroborate the earlier finding [2]. We then apply the same methods to the data simulated
by seven leading GCMs for the same four sites.
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Figure 2. Results of FA (*) and DFA (◦) for observed data. In each panel curves from top to
bottom represent FA and DFA1–DFA5. The scale of fluctuation function is arbitrary. Unit of s is
month. Solid line shown (for comparison) at the bottom of each panel is the theoretical line with a
slope 0.65. Numbers within parentheses represent the geophysical co-ordinates of the considered
site.

3.1. Application to the observed temperature data

Figure 2 shows the results of FA (∗) and DFA (◦) for the observed data for the four sites New
York (USA), Brookings (USA), Saint Petersburg (Russia) and Tashkent (Uzbekistan). In each
panel, curves from top to bottom represent the results of FA and DFA1–5. After about 1 year
the DFA curves are parallel to each other with a slope of 0.65 ± 0.02 (compare with the line
with slope 0.65 shown at bottom). This finding is in agreement with earlier results [2].

In contrast the FA curves for New York (after 1 year), and Brookings (after 2 years) bend
upwards yielding a higher exponent. This indicates the presence of a weak trend, probably
due to urban warming, which is eliminated by the second order and subsequently by higher
orders of DFA. Thus, it should be adequate to consider the results of DFA3 for comparing the
scaling performance of the global climate models (GCMs).

3.2. Application to the data simulated by GCMs

Before considering the results of the FA and DFA, we will present some of the essential details
of GCMs. During the past two to three decades, general circulation models have proven to be an
indispensable tool for the study of geophysical fluid dynamics systems. These models provide
numerical solutions of filtered forms of the Navier–Stokes equations devised for simulating
meso-scale to large-scale atmospheric and oceanic dynamics. In addition to the explicitly
resolved scales of motion, these models also contain parameterization schemes representating
the so-called subgrid-scale processes, such as radiative transfer, turbulent mixing, boundary
layer processes, cumulus convection, precipitation, and gravity wave drag. A radiative scheme,
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for example, is necessary for simulating the role of various greenhouse gases such as CO2.
When run for the global domain, the only boundary conditions that need to be specified are
those describing the effects of the surface of the Earth. A typical coupled atmosphere ocean
(AOGCM) climate model will have a grid spacing of 300–500 km and 10–20 vertical layers
as compared to weather forecasting models which have a grid spacing of 100 km or less
and 30–40 layers. This difference in spatial resolution is due to the much longer integration
times needed for climate models. The differences among the models developed by the leading
research centres usually lie in the selection of the numerical methods employed, the choice
of the spatial resolution, and the detailed formulation of the subgrid-scale parameterization
schemes.

Each model is usually subjected to a rigorous evaluation procedure by its developers
including consistency and sensitive tests. Models are also updated by comparing them with the
historical data. These efforts have been, however, restricted to traditional time series analysis of
overall characteristics of the entire simulation period. Recently, model inter-comparisons have
become quite popular. Even in these inter-comparison projects the evaluations are mostly based
on the same diagnostic tools as used for the individual model assessments and relate, therefore,
only to mean states and simple measures of variability. In general, the traditional methods
assume that the statistical properties of a signal remain the same throughout its unfolding
period which is not true for the climate records due to the superimposed anthropogenic effect.

Today, selected results of state-of-the-art climate models are readily available through
the Internet. Here we consider the monthly temperature records with the greenhouse
gas forcing only scenario5 from seven AOGCMs: GFDL-R15-a [12], CSIRO-Mk2 [13],
ECHAM4/OPYC3 [14], HADCM3 [15], CGCM1 [16], CCSR/NIES [17], NCAR-PCM [18]
that are available from the IPCC Data Distribution Centre [19]. We extracted the data for four
representative sites around the globe (New York, Brookings, Tashkent and Saint Petersburg).
For each model, we selected the four closest grid points to each site and bilinearly interpolated
the data to the geographical location of the site.

Some of the primary characteristics of the models are listed in table 1. All models are
global, include a full suite of subgrid-scale processes, and explicitly consider ocean dynamics.
Note that HADCM3 is the only grid-point AOGCM while the other six models use the spectral
method. All of the ocean models are grid-point models and do not necessarily have the same
spatial resolution and grid as the atmospheric models. The periods for which the models
were run are: GFDL-R15-a (1958–2057), CSIRO–Mk2 (1881–2100), ECHAM4/OPYC3
(1860–2099), HADCM3 (1860–2099), CGCM1 (1900–2099), CCSR/NIES (1890–2099) and
NCAR/PCM (1871–2098).

All the models used a historical level of CO2 until 1990 and after that they increased the
CO2 level at a rate of 1% per year. The latter effect should mainly cause an increase in the
trend when we consider the entire record and should not affect the scaling. Therefore, if the
models perfectly mimic the real data then they should yield a scaling exponent as found in
the observed record. Results obtained from the real data (see figure 2) show that in double
logarithmic representation, the higher order DFA (DFA2–5) curves are parallel to each other
and hence for comparison it is appropriate to use the results of DFA3.

Results of DFA3 for F(s)/s1/2 for the data simulated by the seven GCMs for the four
sites New York, Brookings, Saint Petersburg and Tashkent are shown in figure 3. Also, the
line with slope 0.15 (corresponding to the real data) is drawn at the bottom of each panel for
comparison. It can be readily seen from figure 3 that, for a given site, all the models show

5 In addition to this scenario there is one more scenario available for all models which is the greenhouse gas plus
sulfate aerosol forcings.
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Figure 3. Results of DFA3 for four sites (New York, Brookings, Saint Petersburg, Tashkent)
simulated by the seven GCMs, GF: GFDL, CS: CSIRO, EC: ECHAM4/OPYC3, HA: HADCM3,
CG: CGCM1, CC: CCSR/NIES, NC: NCAR PCM. The curves shown in each panel are the DFA3
fluctuation function divided by s1/2 obtained for different models for the site considered in that
panel. Theoretical line with slope 0.15 is drawn at the bottom of each panel for comparison. The
scale of fluctuation function is arbitrary. Unit of s is month.

Table 1. Primary characteristics of GCMs.

Atmospheric
Model Origin Type resolution Coupling

GFDL-R15a GFDL (Princeton) Spectral R15L9 Flux correction
CSIRO-Mk2 CSIRO (Australia) Spectral R21L9 Flux correction
ECHAM4/OPYC3 DKRZ (Hamburg) Spectral T4L19 Flux correction
HADCM3 Hadley Centre (UK) Grid point M96N73L19 Flux conservation
CGCM1 CCC (Canada) Spectral T32L10 Flux correction
CCSR/NIES CCSR (Japan) Spectral T21L20 Flux correction
NCAR-PCM NCAR (Colorado) Spectral T42L18 Flux conservation

wide differences in scaling behaviour. Some of the models show uncorrelated behaviour after
a few years (see figure 3 ECHAM4/OPYC3 model and table 2) which implies loss of memory.
For New York, the HADLEY model yields an exponent of 0.64 which is close to the observed
data. None of the models perform well for Tashkent, Saint Petersburg and Brookings.

Table 2 summarizes the exponents obtained for the four sites simulated by different models.
It can seen from table 2 that most of the exponent values are in the range of 0.50–0.56, although
for some of the sites the exponents are closer to the observed data. Also, the mean and standard
deviation values of these exponents are given in table 2 (in an ideal situation the mean and
standard deviations of the scaling exponents obtained from the models should be 0.65 and
zero, respectively), which indicates the inconsistency of the models.
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Figure 4. Comparison of fluctuation functions of GGFO scenario and CR for four GCMs. Curves
from top to bottom in each panel show fluctuation functions of FA (	) and DFA1–DFA5 (◦).
Fluctuation functions of GGFO scenario are shown by solid symbols while those of CR are shown by
open symbols. Theoretical lines with slopes 0.5 (bottom) and 0.65 (top) are drawn for comparison.
The scale of fluctuation function is arbitrary. Unit of s is month.

Table 2. The fluctuation exponent α obtained for different models for different cities.

Brookings New York St Petersburg Tashkent Mean Std.

GFDL-R15a 0.6 0.55 0.57 0.6 0.58 0.02
CSIRO-Mk2 0.5 0.5 0.56 0.55 0.53 0.03
ECHAM4/OPYC3 0.5 0.56 0.51 0.5 0.52 0.02
HADCM3 0.52 0.64 0.57 0.51 0.56 0.05
CGCM1 0.55 0.57 0.57 0.55 0.56 0.01
CCSR/NIES 0.5 0.52 0.54 0.58 0.53 0.03
NCAR PCM 0.52 0.61 0.56 0.52 0.55 0.04

Next, we compare the scaling behaviour of the temperature data obtained from the GGFO
scenario with that of the control run (CR). Figure 4 shows representative results for Tashkent for
the four models: (i) CSIRO-Mk2, (ii) ECHAM4/OPYC3, (iii) CGCM1 and (iv) CCSR/NIES.
The other three GCMs do not have data for the periods discussed in figure 4 for CR and hence
we have not considered them for the comparison. Figure 4 shows the fluctuation functions
of FA (	) and DFA1–5 (◦) for the GGFO scenario (solid symbols) and CR (open symbols).
Since trends are not eliminated in FA, fluctuation functions of FA for CR yield lower exponents
when compared to those obtained for the GGFO scenario, as expected. For the case of CR, the
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fluctuation functions of DFA1–5 show a scaling exponent close to 0.59 for CSIRO-Mk2, 0.65
for ECHAM4/OPYC3 and CGCM1, and about 0.6 for CCSR/NIES, which are less far from
the universal exponent found in the observed data (α = 0.65). This shows that the addition
of increased CO2 in the models causes the simulated results to lose the observed scaling (for
comparison see the fluctuation exponents for Tashkent for the same models in table 2).

4. Conclusions

None of the GCMs for the GGFO scenario show scaling performance close to the observed
data. The lower exponent values obtained for the GGFO scenario show that the models lack the
persistence found in the observed data. In addition, the models display a wide range of scaling
performance. Also, the comparison of the scaling exponents of CR versus GGFO scenario
shows that the gradual addition of CO2 makes the models lose their memory during the course
of simulation. Even though the additions of CO2 in the models are based on fair assumptions,
they are not being done in a proper way. The introduction of a gradual increase of CO2 causes
some other side effects apart from its usual role of increasing the temperature, which causes
the models to lack the universal scaling behaviour. A careful analysis of the methodology of
the addition of CO2 may certainly improve the performance of the models.
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