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Sliding objects with random friction
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Abstract

We study the motion of elastic networks driven over a random substrate. Our model which
includes local friction forces leads to complex dynamical behavior. We �nd a transition to a
sliding state which belongs to a new universality class. The phase diagram comprises of a
pinned state, a stick–slip motion phase, and a free motion phase. c© 1999 Published by Elsevier
Science B.V. All rights reserved.

1. Introduction

The dynamics of elastic objects driven through an environment with random pinning
interactions is complex and its present understanding still incomplete. Processes of this
type occur in microscopic systems such as charge density waves driven by an elec-
tric �eld [1–3], superconductors subject to external magnetic �elds [4], and polymers
moving through a inhomogeneous environment. Related processes on a macroscopic
scale occur in the motion of geological faults [5–7], or in sliding friction between an
elastic object and a rigid one [2]. Theoretical studies of these phenomena are usually
modeled by an elastic network moving in a rigid environment or over a rigid sub-
strate with random interactions between them. In the simpli�ed case where one of the
two objects is homogeneous, one may distinguish between random network models,
where the random interactions are assigned to sites on the elastic network while the
medium or substrate are homogeneous, and the random substrate, models where the
random interactions are assigned to the sites of the substrate or the embedding medium
while the elastic network is homogeneous. These two type of models are illustrated in
Fig. 1.
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Fig. 1. Illustration of the random network and the random substrate models.

Random network models were invoked to describe randomly pinned charge density
waves (CDW) in solids [9–20] and were widely studied. Most recent work on random
substrate models concentrated on the high velocity limit, where the distortions of the
network induced by the random interactions are mild [21–25], while the dynamical
properties near the critical external �eld for depinning received less attention. We
focus on the simplest discrete realization of the random substrate model containing no
ad hoc features such as velocity-dependent forces [6], and compare it to the analogous
random network model. The study shows that the dynamics of the random substrate
model above depinning threshold is interesting and complex, featuring several distinct
regimes. In contrast, in the random network case the elastic object follows a simple
steady state motion. The pinned state of the random substrate model below threshold is
characterized by a wide distribution of strain avalanches. Similar avalanches occur in
the random network model, however the critical exponents describing the distributions
of avalanche sizes are de�nitely di�erent.
The properties of the discrete random substrate model depend on three parameters:

The external �eld, the ratio of pinning strength to the elastic sti�ness, and the char-
acteristic size of the local pinning regions. We �nd that whereas in some parts of the
relevant phase diagram the two models are approximately equivalent, through most of
it there are pronounced di�erences between them, and the critical behavior belongs to
distinct universality classes.

2. The Model

Sliding elastic objects are represented here by a discrete chain of particles connected
by springs (see Fig. 1). In the random network limit each particle is attributed a random
pinning force, while the substrate is homogeneous. For an external force E switched
on at t =0 acting uniformly on all particles, the dynamics of the displacements of the
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positions of the particles from their initial equilibrium positions: �i = xi(t) − xi(0) is
described by the following overdamped equations of motion:

Random network:

@�i=@t =max(0; �(�i+1 + �i−1 − 2�i) + E − V (i)) : (1)

This realization of the random network model, also known as the ratchet model [11,12]
successfully describes the dynamical phase transition of charge density waves from a
pinned state to a DC current conducting state at a critical external �eld Ec [11–18]. 1

In the random substrate model the particles interact with the substrate via local
pinning forces V (xi), whereby the ith particle at position xi (in the substrate frame of
reference) moves if the total force acting on it is greater than V (xi). As before, the
dynamics for the displacements: �i=xi−xi(0), is described by the following equations:
Random substrate:

@�i=@t =max(0; �(�i+1 + �i−1 − 2�i) + E − V (�i + i)) : (2)

Initially, the particles positions form a 1D lattice with unit spacing: xi(0) = i. Pinning
forces are local, with a characteristic range �. In our study the pinning force is con-
stant inside lattice unit cells, (�= 1), and varies randomly from one cell to the next.
We chose a binary distribution for V of the type: �(V )=p�(V−V1)+(1−p)�(V−V0),
usually with p=0.5. We adopt periodic boundary conditions, so that the argument of
V in equation (1) is �imod(L) + i.
Both models also depict a discrete one-dimensional elastic interface moving in the �

direction in a two-dimensional (i; �) plane [10], where the interface is initially 
at. In
the random substrate model a pinning site on the i axis, transforms into lines of pinning
sites of slope unity in the (i; �) plane, as described in Fig. 2. In the random network
case, pinning sites form columns of �xed pinning strength Vi in the same plane.

Approximate scaling properties:
The dependence of the general behavior of the random substrate model on the elastic

sti�ness �, and on the size � of regions where pinning forces do not vary, can be
simpli�ed by the following scaling relation [26] (provided max(�; ��)¡1):

�(�; �; t) = �−1�(1; ��; t=�) : (3)

Extending this scaling relation to �¿1 results in a hybrid random network–random
substrate model, so that the pure random substrate model is not preserved. However,
in the limit �/1 the pure random network model is approached, so that the random
network model and the random substrate model approach each other in the very high
sti�ness limit, as �→ ∞.
1 In the FLR-Fisher equation is similar to Eq. (2), except that there V (i) is multiplied by a cosine function
of �. Using the ratchet condition is similar to replacing the cosine force by a derivative of a sawtooth
potential, except that local backword motions down the slope of the sawtooth are excluded. These motions
do not a�ect the large scale dynamics since the model has no inertia. The critical behavior of the random
network model below threshold is in the same universality class as the CDW models of Fukuyama Lee and
Rice and Fisher [2,3,9,10], but can be solved analytically.
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Fig. 2. A charactersitic pinned con�guration in the interface representation of the random substrate model.

3. Dynamical properties

In the random network model above the threshold Ec all particles eventually move
with the same �nite velocity as a rigid distorted object. Adding the N equations of
motion Eq. (1) the elastic forces sum-up to zero, so that the velocity of the center of
mass is [11,12]

URN = E − Ec ; (4)

where for a chain of N particles Ec = (1=N )
∑
Vi.

The dynamical behavior of the random substrate model is more complex, and
two distinct regimes appear as the driving force is varied above the depinning
threshold E1:
stick–slip regime: E1¡E¡E2:
The center-of-mass of the system moves with a roughly constant velocity, modulated

by fast 
uctuations, although at any time a �nite fraction of the particles are not in
motion.
The center-of-mass velocity U obtained numerically for several values of sti�ness

� is shown in Fig. 3. Each curve corresponds to a single representative random con-
�guration for chains N = 100–1000. At the threshold there is a small discontinuity,
followed by a linear E dependence. The fractions of particles that are in motion at a
given instant corresponding to the velocity curves in Fig. 3 appear in the inset.
Deriving the CM velocity by summing the individual equations Eq. (2) is more

subtle in the random substrate case, since the equations for particles with zero velocity
are actually inequalities. Time averages over su�ciently long periods are equivalent to
those obtained from a linearized version of Eqs. (1) and (2) where the ratchet condition
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Fig. 3. Time-averaged center of mass velocity vs. driving force for networks of various sti�ness. Inset: Mean
fraction of particles in motion.

is omittted, leading to

URS = E −
∑

n(Vi; E)Vi ; (5)

where n(Vi; E) is the time-averaged fraction of particles occupying the ith unit cell.
Since the residence time of particles over a strong pinning area is longer than over a
weak pinning one, the mean occupation fractions n(Vi; E) are monotonously increasing
functions on Vi, so that for two systems sharing the same distribution of random pinning
strengths, the mean velocity of the random network is always greater than that of the
random substrate system, asymptotically approaching it from below in the limit of high
velocity. The threshold E1 is the solution of the equation:

E1 −
∑

n(Vi; E1)Vi ; (6)

so that the inequality E1¿Ec is always valid.
The center-of-mass velocity of the random substrate model can be expressed as a

driving force minus a velocity-dependent drag force F(U ):

URS = E − F(URS) : (7)

Analysis of the velocity data shows that F(U ) is equal to the static friction force E1 in
the limit of zero velocity, increases with increasing velocity above E1 reaching some
plateau, eventually tending to Ec for high velocities. This weakening of the kinetic
friction force with increasing velocity is generated by a detachment instability where
the fraction of immobile particles abruptly vanishes (Fig. 3 inset). Qualitatively similar
features were observed in experiments where an elastic membrane is dragged over a
rigid substrate, performing stick–slip motion [8].
The center-of-mass velocity for E just above the depinning transition scales as (E−

E1)�. For the random network model, trivially, � = 1. Our results for the random
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substrate model also follow a linear E − E1 dependence, i.e. �= 1. This is in contrast
with Refs. [27,28], where �=0:47 is reported. The di�erences in exponents may be due
to di�erences between our model and the speci�c realization of the random substrate
model in Ref. [27,28]. This is supported by the fact that in nonlinear dynamical systems
with quenched randomness, universality is often weaker than in equilibrium critical
phenomena, so that some critical exponents may depend on details on short length
scales. A striking demonstration of this for a directed polymer in a random medium,
a problem closely related to the one considered here, was published recently [29].
free motion regime: E¿E2:
In this regime all particles possess a �nite velocity at all times (see Fig. 3, inset).

The instantaneous velocity of the center of mass is made up of a constant part plus a
random washboard like modulation induced by motion over a 
uctuating pinning land-
scape. In the limit: E/E2, the velocity tends to that of the analogous random network
Eq. (3), and the relative 
uctuating component of the velocity diminishes (Fig. 3).
The drag force F(U ) approaches Ec.
Our model assumes the presence of local friction forces randomly distributed along

the interface, while their microscopic origin are outside its scope. The stick–slip dy-
namics in the random substrate model is a consequence of the random arrangement
of simple local interactions together with the cooperative e�ect of the elastic forces.
While the decrease of macroscopic kinetic friction with velocity in real materials may
have various causes, comparison with our results suggests surface inhomogeneity or
randomness may play a signi�cant role.

4. Scaling properties of the pinned state

For both models, interfaces evolving by the dynamics described in Eq. (1) or Eq. (2),
starting from a 
at initial con�guration, (�i=0 at t=0) and subject to a constant drive
E below the pinning threshold, eventually reach a static state of strongly strained do-
mains, or strain avalanches, 2 seperated by virgin particles which never moved. For
E approaching Ec from below, the random network model undergoes a second order
dynamical phase transition [11–13]. The following numerical results show that the ran-
dom substrate model follows a qualitatively similar critical behavior, but of a di�erent
universality class.
Fig. 2 shows a typical pinned interface for the random substrate model. Here in-

terfaces are hindered by the tilted pinning lines, leading to characteristic triangular
structures with a roughness exponent �=1. In contrast, in the random network model,
distortion of domains is much more pronounced and the roughness exponent is � = 3

2
[10–13]. Similar to the random network model and to many other non-equilibrium sys-
tems (e.g. the scaling of avalanche sizes in self-organized criticality: [30]), the number

2 The equations of motion Eqs. (1) and (2) have ini�nitely many static solution. We focus on pinned states
reached �rst from 
at initial con�gurations in the presence of time independent external �eld.
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Fig. 4. Log–log plot of scaled distribution of sizes of strain avalanches in the pinned regime.

of domains of size ‘ per unit length in the random substrate model has the generic
scaling form

n(‘) ∼ ��x−��(x) ; (8)

where x = ‘=�(�), and �(x) is a slowly varying function for x¡1 with a steep cuto�
at x¿1. The typical size of the largest domains, �, diverges as �−� where �= E − E1.
The number of domains is not �xed. Close to the depinning threshold the number
of virgin particles vanishes, and the whole system is tiled by strained domains. This
global condition implies that the �rst moment of n(l) is a slowly varying function of �
that does not become singular at criticality, leading to �=2 for �¿1, while for �¡1,
� = 1− �. The exponents of the random network model are di�erent: �= 3=2, � = 2,
�= 2 [11].
We obtained n(‘) for the random substrate model by solving Eq. (1) numerically

for an ensemble of 40 random realizations of chains of 104 particles. Fig. 4 shows the
rescaled histograms. The collapse of the data for di�erent values of � was achieved by
rescaling using �= 2 and �= 0:9± 0:1.
The analysis of higher moments of n(‘) does not show signi�cant deviations from

single parameter scaling. The values of critical exponents are sigini�cantly di�erent
than those of the random network model, con�rming that the two models belong to
distinct universality classes.

5. The phase diagram

The properties of the random substrate model depend on the network’s elastic sti�-
ness. Intuition suggests that when the network becomes very rigid, the di�erences
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Fig. 5. Phase diagram in the (�; E). The network con�gurations are pinned in phase I and phase II. Phase
III corresponds to stick–slip dynamics, and phase IV to free motion. In phase I the random network and
the random substrate models yield similar pinned con�gurations. Theoretical lower and upper bounds of the
boundary of phase I are shown.

between the two systems should vanish. Fig. 5 represents a (�E) phase diagram, ob-
tained from numerical studies of chains of N = 100. As the sti�ness increases, the
random substrate threshold E1 approaches Ec. The second threshold E2 is of the order
of Vmax, the upper bound of the pinning strength distribution, and depends only weakly
on �.
Within the pinned regimes of both models, in region I of the phase diagram, con-

�gurations of strained domains of both models are roughly the same. The dark circles
denotes values of �; E where the relative Hamming distance D 3 between locations of
strained domains for pairs of systems from each model with the same set of pinning
strengths {Vi}, is smaller than 0.06.
For the random network model the largest displacement �max(�) is bounded by

�(�)3=2 ∼ �−3. The scaling of the random substrate model with sti�ness given by
Eq. (3), implies that for large �¿�max the two models track. This is a su�cient con-
dition , so it yields a lower bound for the boundary of region I where the two models
coincide, given by values of �; E:

Ec − E ∼ 1
�1=3

: (9)

3 The relevant Hamming distance is: D =
2
∑

{� RS (�i)−� RN (�i)∑
{� RS (�i)+ � RN (�i)

where � is a unit step function.
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An upper bound for E(�) is given by the relation: Ec−E ∼ 1=� [26]. The corresponding
boundary is also shown in Fig. 5. The fact that for sti� networks the two models are
roughly equivalent, means that aspects of friction between very sti� solid bodies which
are related to inhomogeneities on the interfaces can be described by the random network
model, or by models based on it, elaborated to better conform to real solids.
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